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We argue that food and nutrition security is driven by complex underlying systems and that both research and policy in this area would
benefit from a systems approach. We present a framework for such an approach, examine key underlying systems, and identify
transdisciplinary modeling tools that may prove especially useful.
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N
utrition is a fundamental hu-
man need, affecting health and
well-being throughout the
lifespan in myriad ways. A

central concept in the study of human
nutrition is food and nutrition security,
which is typically defined as “when all
people, at all times, have physical and
economic access to sufficient, safe and
nutritious food to meet their dietary
needs and food preferences for an active
and healthy life” (1). The absence of food
and nutrition security can have significant
consequences for individuals and for
society, including malnutrition, obesity,
disease, and poverty.
Despite rapid growth in agricultural

production over the past four decades,
significant malnutrition persists. Average
per-capita food consumption was below
the recommended 2,200 kcal/d in 33
countries in 2003. Globally, more than 850
million people lack adequate access to
food on a regular basis, with a third of
these in East and Southeast Asia, another
third in South Asia, and a quarter in
sub-Saharan Africa. In sub-Saharan
Africa, one of the most food-insecure
regions, the number of hungry people has
gone up by 20% since 1990; more than
a third of the population is undernour-
ished in such countries as Kenya and
Tanzania. There are 126 million under-
weight children in the world and over 2
billion people who suffer from micro-
nutrient deficiency (2–4).
At the same time, there has been an

alarming rise in obesity in the developed
world (5, 6) and, increasingly, in the
developing world as well (7–9). The obesity
rate in the United States doubled
between 1970 and 2000, to almost 30% (5);
worldwide, nearly 1.5 billion people are
now overweight or obese (9). Like malnu-
trition, obesity has significant implications
for public health (10, 11) and health care
costs (12). Obesity can coexist in the same
populations as malnutrition, and it may
be linked to the same forces that drive
reductions in malnutrition (13, 14).

Complexity of Food and Nutrition
Security
Both phenomena, malnutrition and obe-
sity, are manifestations of widespread
food and nutrition insecurity. The deter-
minants of this insecurity are complex. A
primary driver of food security or insecurity
is the agricultural food system. The agri-
food system spans a series of interrelated
processes, including production of raw
food materials through farming and raising
of livestock, processing and packaging
for consumption, distribution, and utiliza-
tion by consumers (15). These processes
are affected by a range of influences, in-
cluding diffusion of agricultural technol-
ogy (16, 17), functioning of capital
markets, infrastructure at both local and
regional/global levels, organization of
firms and supply chains, sociopolitical
factors governing food practice and land
ownership (18), and social norms and
cultural preferences (19). The overall food
system crosses multiple levels of scale,
from individual farmers and consumer
decision makers to national and in-
ternational economic markets, multina-
tional firms, and global supply chains, and
its structure changes over the course of
economic development.
Food and nutrition security is also

strongly shaped by systems outside of the
agri-food sector. Even given adequate
supply and access to food, nutrition secu-
rity can be influenced by individual het-
erogeneity in physiology or disease (20, 21)
and by access to clean water, hygiene, and
cooking practices (22, 23). Evidence sug-
gests that malnutrition can be affected
by infectious disease, and, in turn, under-
nutrition (and potentially overnutrition)
can shape susceptibility, transmission, and
progression of infection, creating rein-
forcing feedbacks (2, 13, 20, 24–28).
Food and nutrition insecurity in the fu-

ture is likely to be affected by ongoing
regional and global trends that have an
impact on the potential functioning of the
food system, such as climate change (29–
35), population growth (3, 36), economic

development (37, 38), urbanization (36,
38, 39), migration (38, 39), and especially
environmental and ecosystem dynamics
(36, 40–45). These constitute distinct dy-
namic systems that interact with food
production, distribution, or consumption,
and affect the stability and sustainability of
the food supply and of nutrition itself.*
The complexity of these underlying sys-

tems makes food and nutrition security
a particularly challenging topic for scien-
tific study. The processes and influences
described above not only cross a wide range
of levels of scale, but are also the province
of very different fields of science (eco-
nomics and business, epidemiology and
immunology, ecology and climatology),
each with its own terminology, techniques,
and forms of data and modeling. Yet
interactions across and between levels and
systems are critical drivers of ultimate
dynamics of food and nutrition security.
This type of dynamic complexity† makes
policy making, governance design, and
evaluation especially challenging (47, 48),
because changes in one process or at one
level may be offset (or even reversed) by
adaptive responses elsewhere in the sys-
tem. Similarly, potential synergies and
feedbacks between components that could
be harnessed for policy impact might go
overlooked. Despite promising efforts
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*An alternative definition of food and nutrition security
reflects both the importance of sustainability through
time and the household level of scale (rather than pop-
ulation level): “A household is food secure when it has
access to the food needed for a healthy life for all its
members (adequate in terms of quality, quantity, safety,
and cultural acceptability), and when it is not at undue
risk of losing such access” (46).

†The term “dynamic complexity” denotes the counterintu-
itive dynamics that can result even from relatively simple
systems due to nonlinearity, interaction of system ele-
ments, and feedback loops.
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toward development convergence, agri-
food, health, and environmental systems
are still largely studied and administered
with little direct attention to linkages be-
tween them (35, 45). Global development
initiatives remain poorly connected with
regional, national, and community-level
efforts, missing potential synergies.
These challenges suggest that a systems

approach may be of particular value in
understanding and shaping food and nu-
trition security. Such an approach would
connect interrelated systems across disci-
plinary lines, and explicitly examine in-
teraction effects and feedbacks. Since the
design, management, and control of com-
plex adaptive systems can involve a chal-
lenging array of distributed and interacting
agents, powerful feedback loops, large time
delays, and counterintuitive system be-
havior, this may require innovative meth-
odological strategies. Modeling techniques
drawn from complexity science have arisen
to address such challenges, and have
proved to be of particular value in the study
and management of other similarly com-
plex problems. Their application to food
and nutrition security can provide fresh

insights into the interconnectedness and
interdependencies within as well as across
sectors, scale, space, time, and jurisdiction,
potentially identifying promising new
strategies for single and/or system-level
intervention. Of particular interest for
a systems approach to food and nutrition
security are system dynamics (SD) and
agent-based modeling (ABM) (47–55).
In the remainder of this paper, we first

present a framework for an initial systems
approach to food and nutrition security.
This framework identifies key feedbacks
and links between important system com-
ponents, focusing on the agri-food, health,
and environmental systems. We then ex-
amine each of these three systems in more
detail. Drawing on relevant theoretical and
empirical literature, we identify key com-
ponents of and trends in the food system
itself that play an important role in food
and nutrition security at different levels
of economic development. These would
form basic building blocks for systems
modeling. Next, we highlight two especially
important drivers of food and nutrition
security that lie outside of the food system
itself: disease and environment. We ex-

plore in more detail the evidence for key
feedback loops and linkages between these
systems and food and nutrition security,
and identify existing models and frame-
works from both epidemiology and envi-
ronmental science that could serve as
starting points for a broader systems model
of food and nutrition security. Where rel-
evant, we identify particular modeling
techniques that may prove especially ad-
vantageous. Finally, we conclude by
reviewing the potential and the challenges
of a systems approach and transdisciplinary
models for food and nutrition security in
the 21st century.

Systems Framework for Food and
Nutrition Security
In Fig. 1, we outline a framework for the
study of food and nutrition security fo-
cused on three major systems: the agri-
food system, the environmental system,
and the health/disease system. All three
represent key drivers of food and nutrition
security, and each independently has
a strong mathematical or systems model-
ing literature. However, many of the most
important links and feedbacks between
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Fig. 1. A systems framework for food and nutrition security.
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these systems and food and nutrition se-
curity have not been extensively modeled,
despite growing empirical evidence of
their importance. Here, we identify and
briefly discuss 10 key links and several
feedback loops‡ they form between the
three systems and food and nutrition se-
curity. In the subsequent sections, we
summarize existing empirical evidence and
modeling work on these systems and links,
and identify ways in which new method-
ologies might contribute.
Our framework is organized around two

loci of influence on food and nutrition
security: influence on outcomes via in-
dividual decision making (about what to
buy, what to eat, and what to prioritize) and
influence on individual outcomes irre-
spective of decision making (e.g., health
status, food availability).
The agri-food system affects the in-

dividual in two major ways. First, agri-food
production and distribution systems shape
the quantity and nutritional quality of
food available to individuals at a given
place and time, thus affecting individual
outcomes (Fig. 1A). Second, agri-food
systems influence individual decision
making through several interrelated
channels, such as food prices, advertising,
and marketing, and by providing income
through employment of farmers or la-
borers (Fig. 1H). Both individual decision
making and outcomes, in turn, affect the
agri-food system itself. The availability of
a healthy and productive workforce (to
produce and distribute food) is strongly
shaped by worker health and nutrition
outcomes (Fig. 1B). Similarly, the demand
curve faced by agri-food production is
made up of the aggregation of individual
decision making in response to price and
quantity (Fig. 1I). Identifying these links
helps to bring important feedback loops
into view. For example, poor food avail-
ability can lead to malnourished and un-
healthy workers, which can decrease
production and further limit availability
of food.
The health and disease system also

affects the individual via several pathways.
First, regardless of decision making and
food intake, health status can affect actual
absorption of nutrients (and thus out-
comes) (Fig. 1F). Second, health status
can affect individual decision making by
shaping available employment opportuni-
ties and income, changing relative priori-
ties (and spending), or constraining the
feasible choice set for both economic and
food decisions (Fig. 1J). Individual nutri-
tion outcomes feed back to affect health
because individual susceptibility to in-

fection or progression and transmission of
disease can be altered by nutrition status
(Fig. 1G). This can produce a feedback
loop in which poor nutrition can lead to
poor health, which makes adequate nutri-
tion still more difficult.
Both the agri-food system and health

and disease system interact with a third
system, the environment, in ways that have
important downstream impacts on in-
dividual food and nutrition security. Eco-
system health can affect human health via
the presence of pollutants or toxins and the
availability of clean water for human use
(Fig. 1E). Both ecosystems and climate
also have an impact on the agri-food sys-
tem by affecting the sustainability of food
production levels and methods, the avail-
ability of water for irrigation, and soil
fertility (Fig. 1D). In return, the agri-food
system can have an impact on ecosystems
and climate via pollutants and soil degra-
dation associated with intensive farming,
via the water cycle, and via emissions of
greenhouse gases and elimination of
carbon reservoirs (Fig. 1C). This defines
another feedback loop: Increasing demand
for food and limited cultivable land can
lead to unsustainable farming practices,
which increase pollutants and erosion
while decreasing soil fertility, leading to
even more pressure on agricultural
production.
We argue below that implementing

a rich, multisystem model of food and
nutrition security that captures these links
may require mathematical and computa-
tional techniques from complexity science,
such as SD and ABM. These have been
widely used elsewhere in the recent
scientific literature, and indeed within
many of the individual scientific disciplines
covered here (49–71). In addition to fa-
cilitating integrated modeling of food and
nutrition security across the agri-food,
health, and environmental systems, these
techniques have the potential to generate
new insights into each system individually.
This potential comes from the ability of
systems modeling to effectively capture
feedback, individual and spatial heteroge-
neity, nonlinear dynamics, multilevel and
spatial interaction, and adaptation—fea-
tures that are central to all three systems.

Agri-food System
The agri-food system is a central driver of
food and nutrition security, affecting in-
dividual opportunities, decision making,
and outcomes (Fig. 1). The structure and
dynamics of agribusiness (food pro-
duction, distribution, and marketing) are
strongly shaped by the trajectory of a
country’s economic growth. Development
is generally characterized by a falling share
of agriculture in economic output, rising
share of urban population compared with
rural population, and rising economic

activity in industry (72, 73), along with
restructuring of the modes of agricultural
production and the labor force (74–76).
The role played by agribusiness in food
and nutrition security is therefore chang-
ing across different stages of economic
development. Models of food and nutri-
tion security will provide the richest insight
if they capture the complexity and het-
erogeneity of this structural development
transition. However, much existing mod-
eling of agribusiness and the agri-food
sector in developing economies does not
fully include these dynamics (77).
One reason for this limitation may be

methodological. Predominant forms of
mathematical modeling of the agri-food
sector [e.g., macroeconomic general equi-
librium (GE) approaches] offer many
insights, but are not well-suited for mod-
eling some of the turbulent dynamics of
economic development because they are
generally predicated on underlying
assumptions that exclude nonequilibrium
dynamics, multiple levels and forms of
interaction between actors, inefficient fi-
nancial markets, deviations from rational
expectations, or incremental adaptation.
Techniques from systems science, such as
SD or ABM, may allow richer represen-
tation of these complex, dynamic, and
adaptive processes involved in the agri-
food system during the transition from
early to late stages of development.
For example, development in the agri-

food system is characterized by changes in
institutional structure as people aggregate
into communities, cooperatives, firms,
supply chains, distribution networks, and
distributed markets. GE models abstract
away these complex structures and modes
of interaction between actors, generally
assuming interactions occur only through
prices and between “representative
agents” (identical farmers, traders, firms,
or households). By contrast, techniques
such as ABM can incorporate rich pat-
terns of interaction by explicitly modeling
each individual and networks of links with
others, allowing for individual behavior
altered by learning, imitation, or local
social influences. In such a model, agents
can migrate, aggregate into institutional
structures like banks and firms, and display
enormous heterogeneity in their in-
formation sets and behavior. ABMs can
also capture “network-based” processes
critical to villages, communities, and
supply chain participants; can model phe-
nomena, such as “herding,” which may
drive spikes in food prices (78); and can
incorporate findings from behavioral
economics that challenge conventional
“strong” rationality assumptions. This
facilitates more nuanced modeling of how
expectations, risk perception, and labor/
investment decisions are made over the
course of development.

‡A feedback loop denotes a causal chain, wherein a change
in one part of the system affects another component,
which, in turn, affects the original component.
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Complex systems modeling approaches
also allow consideration of rich dynamic
pathways. In many macroeconomic
models, price signals are immediately in-
tegrated into an individual’s decisions;
however, in developing economies, such
signals may operate on a diverse set of
temporal, geographic, and administrative
scales, often with substantial asymmetries.
The transition from subsistence agricul-
ture to industrial food production arises
from the progressive accumulation of
small, subtle individual adaptations and
market transformations. Better under-
standing of these dynamics, facilitated
by systems models, may prove important
for identifying novel pathways for eco-
nomic convergence and smallholder food
and nutrition security. Similarly, tradi-
tional microeconomic and macroeconomic
models that allow for only minor fluctua-
tions around stable equilibria have limited
applicability to unstable periods of agri-
cultural and industrial development. ABM
and SD can relax assumptions of efficient
financial markets to study feedback
mechanisms that amplify small effects
(e.g., progressive changes in the nutri-
tional quality of agricultural and food
stocks and their consequence for nutrition
and health transitions).
Agricultural development is also em-

bedded in a broader social and cultural
context. The propensity (and ability) to
eat nutritious foods and maintain
a healthy diet can be affected by social
norms, socioeconomics, and power
structures tied to land ownership and
social status. As a result, different seg-
ments of society may vary widely in the
type and quantity of food they find
available, affordable, and culturally ac-
ceptable (18). In addition, recognition of
feedback between the agri-food sector
and other systems, such as health and
environment (below), can be critical for
effective policy design. Indeed, such
feedbacks may help to explain how efforts
to reduce undernutrition in developing
countries can have the double-edged ef-
fect of increasing levels of obesity in those
same countries (79). Computational sys-
tems models can help to explicitly include
both the heterogeneity and the feedback
loops that result from the broader context
in which agriculture functions.
The impact of agri-food systems on food

and nutrition security, and on other sectors,
varies by development stage (18), as do
the most important actors and processes,
introducing additional complexity. In the
early stages of development, key actors are
governments, development agencies, and
smallholders; private sector involvement
is typically limited. Farmers at this stage
primarily tend small plots in marginal
environments, using a variety of in-
digenous agricultural methods that have

emerged as the most adaptive over
centuries of biological evolution (80).
As development takes place, private
ownership and management of natural
resources grow in relative importance,
replacing the communal control and open
access that predominate in early stages.
This has important implications for stew-
ardship of environmental and ecosystem
resources (Environmental System) and
sustainability (81, 82). As development
proceeds, domestic conglomerates form,
trade and foreign direct investment ex-
pand, and transnational food manufactur-
ing and supermarkets linked into global
value chains enter the market (83).
Increasingly complex supply chains and
economic networks tie farming produc-
tion, processing, and marketing together
(often unevenly) across markets and
jurisdictions. With this process of de-
velopment comes increasing pressure on
the economic well-being (and nutrition
security) of smallholders, who are often at
a disadvantage compared with larger
commercial farmers capable of supplying
larger volumes of quality-assured products
with more bargaining power and better
access to information, services, technol-
ogy, and capital (84). In addition, this
process has implications for diet compo-
sition and health, with a transition from
fresh and minimally processed food to
highly processed food and from domestic
local supply to multinational concentrated
supply (85–87). This shift may be associ-
ated with growing rates of obesity in many
developing countries undergoing a nutri-
tion transition (88).
This dynamic complexity implies that

a sufficiently rich model of the agri-food
sector must have three particular
characteristics: flexibility to capture
changing patterns of interactions through
time tied to stages of development; in-
clusion of sufficient heterogeneity of
individuals and modes of interaction; and
capacity to include links to (and feedbacks
with) other sectors, such as health and
environment. We argue that systems
approaches are especially well suited
for these requirements. They offer the
potential to provide a deeper analytical
understanding of the dynamics ultimately
driving the food and nutrition of individ-
uals and populations (77). They may
also allow examination of development
pathways with more optimal short-term
and long-term net impact on nutrition,
including Webb and Block’s strategy
for reducing malnutrition without pro-
ducing obesity as an adverse side
effect (89).

Health and Disease System
The relationship between nutrition and
disease is complex and bidirectional. Many
infectious diseases can directly lead to

malnourishment, even when access to food
is sufficient (2, 20, 26) (Fig. 1E). At the
same time, malnourished (and over-
nourished obese) individuals are more
susceptible to many diseases (26, 27, 90–
92) (Fig. 1G).
Malnutrition is often described as “the

most important risk factor” for illness and
mortality globally, and it is directly or in-
directly responsible for more than half of
all deaths in children under 5 y of age (2,
27). Birth weight is the most impor-
tant single predictor of early childhood
mortality (23). Much of the impact of
malnutrition on mortality and morbidity
may operate indirectly through infectious
disease.
Adequate nutrition is essential for acti-

vation and proper functioning of the
immune system (26, 27). Malnutrition can
affect both individual susceptibility to
infection and the course of diseases in an
infected host via several distinct mecha-
nisms and pathways, including compro-
mised immune activation and function,
reduced epithelial integrity, altered mi-
crobiome, diminished treatment response,
greater risk for comorbidities, and oxida-
tive stress (13, 26–28, 91, 92). Indeed,
much of the mortality generally attributed
to infectious diseases may driven by
a combination of infection and malnutri-
tion (27, 92). For children under 5 y of
age, being underweight or undernourished
accounts for more than half of the mor-
tality risk from the most prevalent in-
fectious diseases (2, 23, 27, 93); even mild
malnutrition can substantially increase
risks (93). Malnutrition’s effects on disease
are not unique to children; malaria and
influenza both have general-population
mortality rates proportionate to the de-
gree of malnutrition (28).
While nutrition can strongly shape the

course of infectious diseases, infection can
also be an important driver of the onset of
malnutrition even in the well-nourished
(20, 26), impairing absorption (28) and
affecting the microbiome (13). The high
prevalence of disease in developing
countries may be a major cause of mal-
nutrition, independent of food scarcity
or agricultural systems (2). Thus, malnu-
trition and disease interact in an important
feedback loop affecting food and nutrition
security: Infection makes malnourishment
more likely [both biologically (Fig. 1F)
and by reducing productivity and income
(via Fig. 1 B and H)]; malnourishment
leads to compromised immune function,
increasing susceptibility, severity, and po-
tentially transmission of infection (Fig.
1G); and more severe and widespread in-
fections further worsen nutrition. Docu-
mentation of this feedback loop is
especially clear for major infectious dis-
eases that loom large in developing
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countries, including malaria, HIV, and
diarrheal disease.

Disease Specific Evidence. Malaria infection
can undermine nutrition in the initially
well-nourished, and it is a major driver of
chronic anemia in areas where it is endemic
(24). At the same time, nutrition strongly
shapes malaria outcomes: Low levels of
key micronutrients account for a sub-
stantial proportion of malaria morbidity
and mortality (26, 94). Improved child-
hood nutrition is likely to substantially
reduce the burden of malaria in the de-
veloping world (2, 95, 96).
Even more complex feedbacks are

present in the HIV epidemic, a key driver
of nutrition insecurity in developing
countries (20, 26). Not only are individuals
with HIV prone to malnutrition and
micronutrient deficiency from the disease
(20, 26), but HIV strongly affects nutrition
security indirectly via losses in productive
labor force and resulting decreases in
food production and income (especially in
the agricultural sector).§ Meanwhile,
HIV/AIDS itself is shaped by nutritional
status. Nutrient deficiency and weight
loss are associated with more rapid pro-
gression and increased mortality (26);
weight loss of only 5% can be predictive of
death. In addition, malnutrition may in-
crease transmission by those who are HIV-
positive (26), worsening the epidemic.
Malnutrition is also a key risk factor for

acquiring diarrheal disease, which has
become the leading cause of childhood
death in developing countries, and leads
to mortality rates 14- to 24-fold higher from
the disease (26, 97). Contaminated food
and lack of access to clean water and sani-
tation are also major drivers, making
agricultural production a potential con-
tributor (23, 97) (Environmental System and
Fig. 1 C and E). Because diarrheal disease
reduces absorption of key nutrients, it is
also a major cause of malnutrition in the
developing world (with a particularly long-
term impact on growing children), com-
pleting the feedback loop (97, 98).

Integrated Modeling of Infectious Disease
and Nutrition Security. The field of infec-
tious disease epidemiology has a strong
tradition of mathematical and computa-
tional modeling (56–63), with applications
to many of the diseases discussed above
(99–101). Such models provide important
insights into the core dynamics of these
diseases, and could provide an important
component of a systems approach to food
and nutrition security.

However, epidemiological studies of
infectious disease have rarely included
detailed treatment of nutritional status
(26). The relationship between nutrition
and infection has been the focus of an
increasing amount of recent research, as
new evidence has emerged on the com-
plexity of underlying mechanisms and
mediating factors, such as microbiota (13,
25, 27). More research and better models
of these complex dynamics are needed,
along with their integration into pop-
ulation-level models of epidemiology (26–
28). Most modeling of infectious disease
progression and transmission is focused on
individuals, and often does not capture
longer time-horizon changes in environ-
ment, nutrition, or access to food (30).
Given the growing empirical evidence re-
garding the strong relationship between
nutrition and infectious disease, epidemi-
ology models could gain much by taking
food and nutrition dynamics into account.
Similarly, both scientific study and policy
efforts aimed at reducing malnutrition
could gain much by incorporating rigorous
models of infectious disease. Progress in
management of infectious diseases would
directly or indirectly make a major con-
tribution to reduction in malnutrition (2),
and the links between nutrition and dis-
ease are complex enough to make mod-
eling an important source of new insights.
Modeling techniques such as ABM and
SD are already widely used in epidemiol-
ogy (56–63, 102–104), where they offer
advantages in capturing spatial and non-
linear dynamics, heterogeneity (56, 105),
and adaptive behavior. We have argued
(above) that these same advantages make
their application to agri-food systems
compelling. In addition to these advan-
tages, the existing use of SD and ABM in
epidemiology would facilitate direct in-
tegration of infection and disease models
with agri-food models that address food
and nutrition security from the perspective
of food choice and availability. This would
allow models to capture and explore many
of the feedback loops identified above
more rigorously.

Environmental System
Environmental systems affect the sustain-
ability and future potential of agricultural
foodproduction, availabilityofwater forboth
agriculture and human consumption, and
patterns of weather and temperature. The
relationship between the environment and
agricultural food production is bidirectional
and complex. Three dynamic pathways are
likely to have an especially important impact
on food and nutrition security.

Dynamic Pathways. The first dynamic path-
way is feedback between demand-driven
agricultural intensification and long-term
sustainability of food yields. Global de-

mand for food is expected to increase
substantially in the coming decades, driven
by population growth, urbanization, in-
come growth, and growing demand for
meat (20, 36, 44).¶ Meeting demand will
put new strain on agroecosystems, which
provide 99% of the calories consumed
by humans and cover almost a quarter of
the earth’s terrestrial surface (36, 40).
Opportunities for further expansion of
agriculture are limited, with growing
competition from other land uses (36, 40).
Increases in production are thus most
likely to come from intensification of ex-
isting agriculture, carrying with it the
risk of soil degradation through such pro-
cesses as erosion, salinization, compaction,
acidification, or nutrient depletion (Fig.
1C). Some evidence suggests such degra-
dation may already be occurring (36, 44),
and resulting yield reductions in agricul-
ture on existing land may reach 50% by
2020 (106), further increasing pressure on
agricultural production to meet demand.
Both expansion and intensification of ag-
riculture also reduce biodiversity, an im-
portant source of stability for ecosystems
(36, 44), and may affect carbon, nitrogen,
and hydrological cycles (35, 44, 45, 107).
Neither losses in biodiversity nor negative
ecosystem externalities are reflected in
the individual-level, short-run incentives
of food prices or production profits.
However, these long-term costs are im-
portant factors for long-term food secu-
rity. The combination of increasing
demand for food, increasing soil degrada-
tion, and limited room for expansion of
cultivated land will require careful man-
agement to avoid a destructive feedback
loop: agricultural intensification depleting
ecosystems, leading to reduced yields from
agriculture, leading to still further in-
tensification as agriculture tries to keep up
with growing food demands (Fig. 1 C and
D). Efforts to understand and manage
food and nutrition security must take
ecosystem dynamics of this kind into ac-
count. Food security means not only pro-
viding access to adequate food but
avoiding “undue risk of losing such access”
in the future (46).
A second pathway is competition for

water. Agriculture represents the largest
use of freshwater by humans (108), af-
fecting both the quantity and quality of
water available to other ecosystems and
other sectors of human activity (36).Water
plays a critical role in food production,
with the 16–18% of cropland that is irri-
gated accounting for as much as 40% of
global food production (36, 40). Demand
for irrigation water has been increasing

§The age group most heavily affected by HIV is economi-
cally productive 25- to 50-y-olds, leading to a demographic
gap in this age group in countries with high prevalence;
agricultural sector production and incomes are often es-
pecially heavily affected (20).

¶The production of 1 kg of meat can require between 3
and 10 kg of grain (43), translating dietary change into
much higher demands on agricultural production.
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(108), and further intensification or ex-
pansion of agriculture implies further
growth in demand. However, agriculture
also faces increasing competition for
water from other sectors, especially in
developing countries with rapidly growing
urban populations and industry (36). In-
creased diversion of water for agricultural
intensification will worsen serious short-
ages of water in many regions. By the
1990s, at least 80 countries, with 40%
of the world’s population, were experi-
encing serious water scarcity (109). Even
without accounting for climate effects,
water scarcity is expected to affect 5 billion
people by 2025 (110). Water shortages
already have an important effect on
health and disease (and thus on nutrition
security) (33). Close to 1 billion people
rely on unimproved water sources for
drinking, cooking, and bathing (108),
and lack of access to clean water is a major
risk factor for diarrheal disease, contrib-
uting substantially to malnutrition (Fig.
1E). Urbanization in the developing
world is likely to decrease access to clean
water further (22). Conflict over water
across political, ethnic, and socioeconomic
boundaries has the potential to undermine
food security if it erupts into violence
(3) or produces large-scale migration
(38, 39).
Climate effects represent a third path-

way through which ecosystems may affect
food and nutrition security (35). Although
substantial uncertainty ranges surround
estimates of climate change, recent
evidence suggests changes are likely to
have a major impact on agriculture and an
important influence (mostly destabilizing)
on food security (especially in smallholder
systems) (29–34). Changes in temperature
and precipitation may alter patterns of
land suitability for agriculture (34), and
water pressures are likely to increase,
especially for the 82% of the world’s
agroecosystems completely reliant on rain
(110). Weather conditions are likely to
become more variable across time and
space, producing greater fluctuations in
crop yields and less stability in access to
food, and potentially increasing the range
and season of agricultural pests (34).
Temperature and climate changes are also
likely to affect disease burden, and thus
indirectly undermine food security
(30–34). Disease burden may, in turn,
undermine management of ecosystems
(33), and agricultural production can
affect the course of climate change via the
global carbon cycle (36) and greenhouse
gas emissions (111). These potential
feedbacks between agriculture/health and
climate, along with spatially and tempo-
rally heterogeneous effects of climate
change on food security and human be-
havior, represent an important focus for
integrated modeling.

Integrated Modeling of Ecosystems, Climate,
and Agriculture. As argued above, land-use
and environmental dynamics can be key
drivers of sustainable food production and
nutrition security (42, 69, 110–113). A
growing scientific literature uses mathe-
matical and computational models to gain
insight into processes of land-use change,
ecosystem sustainability, and climate
(66–73, 111–113). Integration of these
modeling approaches and insights would
add an important dimension to a dynamic
and multilevel systems approach to
agriculture (Agri-food System). Such in-
tegration would also benefit existing land-
use and ecosystem models, which gener-
ally do not capture fully the complexity of
human decision making about resource
and land use or adaptive responses to en-
vironmental change. Linkage to sophisti-
cated social science and agriculture
models to capture coevolution of human
and biological systems is likely to produce
new and richer insights at the environ-
mental level (42, 66, 112–114), and would
benefit policy-makers (114). Computa-
tional simulations are widely used in en-
vironmental modeling, and ABM has
recently been applied to natural resource
and land-use management (66–73) and to
individual land and economic decision
making by agriculturalist households in the
developing world (69, 113). Such models
could form the basis for a promising in-
tegration with social science and economic
models of food choice, social influence,
and food availability (above), as well as
integration with models of health and
disease spread whose dynamics might be
shaped by environmental factors. Lever-
aging the ability of complex systems
modeling techniques to capture the in-
terplay of multiple mechanisms, spatial
dynamics, and individual interaction and
adaptation, these combinations across
scientific disciplines could provide a more
theoretically and empirically grounded
systems view of food and nutrition se-
curity outcomes.

Conclusion
Food and nutrition security remains a
pressing global problem, with most coun-
tries experiencing one or both of the twin
challenges of malnutrition and obesity. We
have argued that the drivers of food and
nutrition security are complex, multilevel,
multisectoral, and heterogeneous. This
paper reviewed structural components,
feedback loops, and linkages between agri-
food, health and disease, and environ-
mental systems, which are key underlying
drivers of sustainable food and nutrition
security for smallholders and worldwide.
These complex interconnections pose
challenges for design of effective policy and
for scientific study using many standard
tools. Solving food and nutrition insecurity

is likely to require the interdisciplinary
collaboration of many actors across society,
including health professionals, agricultur-
alists, food industrials, policy-makers,
and scientists, as well as the use of un-
conventional approaches and tools. We
have proposed that SD, ABM, and other
computational systems science approaches
could complement the present battery of
epidemiological, environmental, and mac-
roeconomic models to better capture the
dynamic and adaptive processes involved at
the juncture of these interconnected sys-
tems. This is essential to accelerate un-
derstanding of policy impacts in real time
so that policy-makers, market entrepre-
neurs, and smallholder producers can ac-
cess that information and contribute
to finding appropriate responses.
However, many challenges must be

addressed for such a multilayered systems
approach to be realized. Interdisciplinary
research is highly challenging, facing
obstacles at every step in the research
pipeline from education and training;
through the organization of research and
career advancement in universities; to
the process of peer review, funding, and
publication. Recently, recognition both
of these challenges and of the pressing
need for more interdisciplinary insights
has driven research and policy shifts to
help overcome these barriers. A recent
National Academy of Sciences focus
book identified promising trends and
strategies in academia, industry, and gov-
ernment for facilitating interdisciplinary
research (115), and identified roles all
three sectors can play in furthering this
goal. Policy-makers can help shape the
research environment to facilitate the
success of such efforts. In this paper, we
have also identified existing building
blocks in several different fields that would
allow a strategy of incremental progress
from existing work toward a systems vi-
sion. To accelerate progress, there is
a need to develop integrative longitudinal
databases on key processes and outcomes
of agri-food, health, and environmental
systems that are expected to have single
and combined effects on food and nutri-
tion security. Mapping of within- and
cross-boundary knowledge is also a
critical step toward realizing a systems
approach and transdisciplinary tools for
food and nutrition security, starting with
a concrete understanding of existing
knowledge about connections within and
between systems.
To facilitate this task, we have described

a systems framework that can serve as the
basis for efforts to broaden the scope of
policy and science in this area. We have
examined three critical sectors (agri-food,
health, and environment) in detail to
identify key dynamic processes and exist-
ing modeling efforts that could serve as
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a focus for new data collection and as
building blocks for systems modeling.
Despite the challenges of implementation,
we believe this type of systems approach
is essential to generate important new

insights and policy tools to combat food
and nutrition insecurity today, and to
help anticipate growing challenges that
may threaten food and nutrition security in
the near future.
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