
Analyzing Data From Single-Case Designs Using Multilevel Models:
New Applications and Some Agenda Items for Future Research

William R. Shadish
University of California, Merced

Eden Nagler Kyse
Montclair State University

David M. Rindskopf
City University of New York

Several authors have proposed the use of multilevel models to analyze data from single-case designs.
This article extends that work in 2 ways. First, examples are given of how to estimate these models when
the single-case designs have features that have not been considered by past authors. These include the use
of polynomial coefficients to model nonlinear change, the modeling of counts (Poisson distributed) or
proportions (binomially distributed) as outcomes, the use of 2 different ways of modeling treatment
effects in ABAB designs, and applications of these models to alternating treatment and changing criterion
designs. Second, issues that arise when multilevel models are used for the analysis of single-case designs
are discussed; such issues can form part of an agenda for future research on this topic. These include
statistical power and assumptions, applications to more complex single-case designs, the role of
exploratory data analyses, extensions to other kinds of outcome variables and sampling distributions, and
other statistical programs that can be used to do such analyses.

Keywords: single-case designs, multilevel model, hierarchical linear model, error covariance structure,
error distributions

Single-case designs (SCDs) are widely used to assess the effects
of interventions in such areas of research as special education,
developmental disabilities, certain kinds of behavioral disorders,
instructional strategies aimed at improving the performance of
individual students (Shadish & Sullivan, 2011), and medicine
(Gabler, Duan, Vohra, & Kravitz, 2011). Many researchers see
SCDs as yielding credible and strong causal inferences that ought
to contribute to discussions of effective practices and policies
(Shadish, Cook, & Campbell, 2002). Some agencies, such as the
What Works Clearinghouse funded by the U.S. Department of
Education, have promulgated standards that SCDs must meet in
order to contribute to discussions of evidence-based practice
(Kratochwill et al., 2010). However, one of the unresolved issues
in those standards and in the SCD literature more generally is the

most appropriate kind of data analysis for SCDs. Some SCD
researchers prefer visual analysis to statistical analysis (Kromrey
& Foster-Johnson, 1996; Michael, 1974; Olive & Smith, 2005;
Parsonson & Baer, 1978, 1992). Although visual analysis has its
merits, it can be unreliable and does not allow for quantification of
effects (DeProspero & Cohen, 1979). Among the statistical ap-
proaches that have been proposed are various effect size estima-
tors, randomization tests, and regression analysis (Houle, 2008;
Kratochwill & Levin, 2010; Maggin et al., 2011; Parker, Vannest,
& Davis, 2011; Shadish & Rindskopf, 2007; Shadish, Rindskopf,
& Hedges, 2008). None has yet gained wide consensus as the best
way to analyze SCD data.

The use of multilevel models for analyzing data from single-
case designs is a relatively recent development and one that has
been advanced by only a few authors. Van den Noortgate and
Onghena (2003a) used SAS PROC MIXED to show how multi-
level models are applied to a four-phase (ABAB) design. They
discussed one way of coding the ABAB design so that the analysis
can estimate heterogeneity of effects over participants, yield em-
pirical Bayes shrunken estimates, and model various kinds of error
structures in a two-level model nesting time (i.e., observations)
within cases (i.e., participants). Van den Noortgate and Onghena
(2003b) applied multilevel modeling to the meta-analysis of re-
gression coefficients from a series of two-phase SCDs; they
showed how multilevel models analyze both linear trend and trend
by treatment interactions. Van den Noortgate and Onghena (2007)
showed how multilevel models can be applied to three-phase
(ABC) designs where a baseline phase is followed by a first
treatment and then a second treatment. Van den Noortgate and
Onghena (2008) extended this to a three-level model in which time
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is nested within cases and cases are nested within studies. They
also showed how to include covariates and how one might com-
bine results from SCDs with those from between-groups experi-
ments using multilevel models. Jenson, Clark, Kircher, and Krist-
jansson (2007) and Ferron, Bell, Hess, Rendina-Gobioff, and
Hibbard (2009) presented simulations about the use of multilevel
models in ABAB and multiple baseline studies, respectively.
Gage, Lewis, and Stichter (2012) applied multilevel modeling to
the meta-analysis of SCDs testing the effects of functional behav-
ioral assessment-based interventions.

Despite this excellent work, research has only begun to address
all the issues that arise when using multilevel models to analyze
SCDs. Our purposes in this article are to present new applications
of this analytic approach and then to discuss an array of issues that
should be studied further before this approach can live up to its
potential. The article proceeds in three parts. First, we review the
general multilevel modeling framework as it applies to SCDs. This
includes the modeling of trend in Level 1 equations, modeling
random coefficients from Level 1 in Level 2 equations, adding
covariates in Level 2, and hypothesis testing procedures. Second,
to extend past applications, we show how multilevel models can be
used to address issues not previously covered in that work, includ-
ing modeling nonlinearities in trend, modeling diverse kinds of
outcomes such as counts and proportions, exploring the notion of
overdispersion in Poisson and binomial models, demonstrating
new ways of coding phase effects in ABAB designs, and showing
how to analyze alternating treatment and changing criterion de-
signs. We use the HLM statistical program (Raudenbush, Bryk,
Cheong, Congdon, & du Toit, 2004) to analyze these examples.
This provides an alternative to SAS PROC MIXED, which was
used by the previous work on multilevel models. We sequence the
examples from simple to more complex in order to provide a
gradual introduction to multilevel modeling for the SCD re-
searcher. The simple models would rarely be considered best
practice in SCD research (Kratochwill et al., 2010), but lessons
learned from them can be incorporated into the analysis of best
practice designs quite easily. Third, we discuss a host of issues that
researchers should consider when using multilevel modeling to
analyze SCDs, including statistical power, hypothesis testing ver-
sus exploratory analyses, statistical assumptions, other outcome
metrics, applications to more complex SCDs, and other statistical
software packages that can do multilevel modeling with SCDs.

The General Multilevel Framework

Throughout this article we use the notation of Raudenbush and
Bryk (2002). SCD data are characterized by multiple time points
being nested within cases, typically with multiple cases present
within each study. At the most basic level, SCDs can be repre-
sented by two equations. The Level 1 equation models time points
within cases; a simple example is

Yti � �0i � �1iati � eti (1)

where Yti is the observation at measurement occasion t for person
i (i � 1, . . ., n), ati is the time or age at measurement occasion t
when the observation was taken for person i, �0i is the person’s
expected observation at ati � 0, �1i is the rate of change per unit
time for person i, and the errors eti. by default are usually are

independent and normally distributed with common variance �2.
However, other error covariance matrices can be specified in
principle, such as a lag-1 error autoregressive model (AR1); in
practice, the ability to estimate such models will depend on having
sufficient data and will vary somewhat over programs. We discuss
this more in the Discussion section.

In every analysis some thought must be given to the scaling of
the time variable, so that ati � 0 occurs at a time for which the
researcher wants to assess an individual’s status. For a one-phase
study, as will be illustrated in our first example, it is often useful
to have ati � 0 at the end of the study. In other studies, one wants
ati � 0 at a change of phases from baseline to treatment. The
scaling of time is a special case of centering in multilevel models.
Such centering can be done in several ways, and this has impli-
cations for the interpretation of both the means and the random
effects. For example, one could scale time so that time 0 is either
the start of baseline or the end of baseline. In the former case the
intercept �0i is the predicted value on the outcome measure at the
start of baseline, and in the latter it is the predicted value at the end
of baseline. This will, in turn, affect the interpretation of the
variances and covariances of the intercept and slope. For instance,
the covariance between status at the start of baseline and growth
rate may be different than that covariance at the end of baseline.
Raudenbush and Bryk (2002, especially pp. 181–198) have pro-
vided details and examples. Centering also reduces possible col-
linearity among predictors (Cheng et al., 2010).

One can extend the Level 1 model in several ways. An example
is to incorporate polynomial terms to reflect nonlinear trends in the
data:

Yti � �0i � �1iati � �2iati
2 � . . . � �Piati

P � eti (2)

One might also add Level 1 predictors, often called time-varying
covariates in the context of time series models (McCoach &
Kaniskan, 2010; Raudenbush & Bryk, 2002). These are predictors
with values that can change over time, such as whether a person
was sick or not on the day a particular observation was taken. In
SCDs, treatment is a time-varying covariate because the case
receives treatment at some times and not at others. So, additional
dummy variables for treatment phase (e.g., 0 � baseline, 1 �
treatment) and the treatment by time interaction will be in the
Level 1 model. However, even though the covariate changes over
time, the coefficient for its effect is a constant over time.

Cases may differ in the value of the dependent variable at time
ati � 0, in their rate of change over time, or in both. The Level 2
equations model that variability across cases in the parameters (the
�s) of the Level 1 equation. For example, in the simplest case the
Level 2 equations for the Level 1 parameters in Equation 1 are

�0i � �00 � r0i

�1i � �10 � r1i
(3)

Here, �00 and �10 are fixed effects intercepts, representing the
average observation at measurement occasion t � 0 over all
persons (�00) and the average rate of change in observations over
time over all persons (�10), r0i and r1i are random effects, assumed
to be normally distributed with a mean of zero, that allow each
case to vary from the grand mean randomly. The latter have
variances of �00 and �11, respectively, and covariances of �10 �
�01, where the subscripts indicate the row and column of the
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variance–covariance matrix of the Level 2 errors. Errors in the
Level 1 model are assumed to be independent of errors in the Level
2 model.

More generally the Level 2 equations can have predictors at the
case level, such as fixed (i.e., not time-varying) person character-
istics like gender or height:

�0i � �00 � �
q�1

Q0

�0qXqi � r0i

�1i � �10 � �
q�1

Q1

�1qXqi � r1i

(4)

Here, q indexes the covariates from q � 1 to Q, and X is a vector
of Q covariates that may or may not be the same for predicting �oi

(Q0) and �1i (Q1). The covariates are frequently identical over all
the Level 2 equations, but this need not be the case. We provide
examples of both. Note that, in this more general form, �00 and �10

are not, in general, averages over cases; their interpretation is
relative to cases with values of 0 on all Xqi.

Null hypothesis tests in HLM for all fixed effects are done using

a t ratio that takes the form of t � �Pi ⁄ �V̂�Pi
, where the

denominator is the square root of the sampling variance of
the numerator (Raudenbush & Bryk, 2002). Degrees of freedom
use the between/within method, where they are a function of the
number of cases and predictors. For the Level 1 model, df � N –
Q – 1 where N is the number of cases and Q is the number of Level
2 predictors (not counting the intercept, which is accounted for by
the 1 in the df equation). Tests for the random effects are done
using a �2 test with the same df � N – Q – 1. However, the true
values of the variance component parameters under the null hy-
pothesis are sometimes at the boundary of the parameter space; for
example, when one tests whether a variance component differs
from zero but the observed variance is very close to zero. In that
case, the �2 test under the null hypothesis does not follow a �2

distribution (Cheng, Edwards, Maldonado-Molino, Komro, &
Muller, 2010). Rather, it follows a mixture of the �2 distributions
for the models with and without the parameter, each weighted .50.
By default, the HLM computer package generates these mixture
chi-squares for this test (Raudenbush & Bryk, 2002; West, Welch,
& Galecki, 2007).

Readers should approach the use of multilevel models to ana-
lyze SCDs with caution, particularly about two issues: error cova-
riance structures and power. With regard to the former, for exam-
ple, Gurka, Edwards, and Muller (2011) showed that the results of
multilevel models in general can be sensitive to the choice of error
covariance structure and that an underspecified structure can seri-
ously distort standard errors. We approach this matter by estimat-
ing random effects for intercept, time, treatment, and the interac-
tion of time and treatment, along with the covariances between
those random effects. We do not estimate an autoregressive model
in addition to or instead of our approach. We outline the issues in
this choice in the Discussion. With regard to power, Muller,
Edwards, Simpson, and Taylor (2007) showed that standard mixed
model tests often have inflated Type I error rates in small samples,
which would seem to characterize SCDs. So although the analyses
we present would seem to suggest high power to detect effects, it
may be that this really reflects high Type I error rates. Again, we
comment more in the Discussion.

Finally, in testing these models, the researcher must clearly
distinguish between the main statistical hypothesis and any sub-
sequent exploratory analyses. We do so in the examples that follow
this section by focusing nearly entirely on testing a clearly iden-
tified main hypothesis. Although we have done subsequent explor-
atory analyses, reported elsewhere, to illustrate the possibilities
(Nagler, Rindskopf, & Shadish, 2008), we comment on them only
occasionally. The main reason is that SCD data sets often have
small numbers of time points and cases that can reduce power. If
so, nonsignificant findings for the main statistical hypothesis may
tempt the researcher further explore the data for significant results
by model respecification. We do not wish to encourage that,
especially if such exploratory analyses were not clearly identified.
We elaborate on this issue in the Discussion. Next, however, we
present examples of the application of multilevel models to SCDs.

Modeling Quadratic Trend and
Normally Distributed Data

The first example illustrates how the analysis of SCDs can be
done with data that are plausibly normally distributed. Such data
are rare in SCD work in psychology and education (Shadish &
Sullivan, 2011) but are more common in N-of-1 trials in medicine
(Gabler et al., 2011). This example also shows how nonlinear
trends can be handled in multilevel modeling; past authors have
looked only at linear trends. Stuart (1967) trained eight obese
females in self-control techniques to overcome overeating behav-
iors. Patients were weighed monthly throughout the 12-month
program, and these data were graphed individually, as shown in
Figure 1. To conduct analyses on these (and subsequent) data, we
digitized the graphs using procedures described in detail elsewhere
(Nagler et al., 2008; Shadish et al., 2009). Each line in Figure 1
represents the weight loss trend of one patient in the study over
time. The graphs suggest that weight loss trends may not be
uniform across patients (i.e., the lines are not quite parallel) and
that the line of best fit may not be straight but rather might require
a quadratic term to account for slight curvature. A good multilevel
analysis should, therefore, assess the possibility of a quadratic
trend by including such a term in the model. This is less an
exploratory analysis than a diagnostic analysis, for the incorrect

Figure 1. Patient weight loss during a yearlong behavioral treatment for
overeating. Adapted from “Behavioral Control of Overeating,” by R. B.
Stuart, 1967, Behavior Research and Therapy, 5, p. 364. Copyright 1967
by Elsevier.
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modeling of the functional form of the trend can lead both to bias
and to inefficiency in the coefficients in the model.

If, as Figure 1 suggests, the rate of weight loss slows over time,
we can model that by including a quadratic transformation of time
in the Level 1 equation:

Ŷti � �0i � �1iati � �2iati
2 (5)

In this example, Yti is the observed weight at time t, ati is the time
when the observation was taken at time t for person i (coded �12,
�11, . . . 0), �1i is the rate of weight change per month for person
i at the end of the study (i.e., at time ati � 0), �2i is related to the
rate of change of slope, ati

2 is the square of time, and the errors eti

are independent and normally distributed with common variance
�2. The assumption of a normal distribution makes sense for
weight but may make less sense for other kinds of outcomes (e.g.,
counts, proportions) that we illustrate in subsequent examples.
Measurement occasion was scaled as (t � �12, �11, . . . 0) so that
the final weight �0i is at the end of treatment for person i (i � 1,
. . ., n). In this and subsequent equations where the left side of the
equation is a predicted outcome, the error term is omitted because
it is represented in the assumption about the distribution of the
observed outcome (normal in this case but binomial or Poisson in
some later cases).

The Level 2 model is the following:

�0i � �00 � r0i

�1i � �10 � r1i

�2i � �20 � r2i

(6)

That is, each effect from the Level 1 equation is treated as
randomly varying over cases, and the variances are �00, �11, and
�22, respectively. Further, each random effect can covary, resulting
in a variance covariance matrix for the random effects of

� � �
�00 �01 �02

�10 �11 �12

�20 �21 �22
�

The diagonal variances tell how much cases vary in their inter-
cepts, linear change, and quadratic change. The off-diagonal co-
variances tell how much these variances are related to each other.
Finally, this model does not fit an autocorrelation to the data, so
the error variance matrix is assumed to be �2I.

Results support the need for a quadratic trend. All three Level 2
intercepts were significantly different from zero, including ending

weight, �̂00 � 158.85, t � 29.85, df � 7, p � .001; linear rate of

change at the end of the study, �̂10 � �1.77, t � �4.94, df � 7,

p � .001; and quadratic effect, �̂20 � 0.11, t � 5.07, df � 7, p �

.001. Of course, the fact that �̂00 � 158.85 is significantly different
from zero is in some sense trivial, for we would not expect
treatment to make the person disappear; however, it does provide
a way of understanding the total weight loss involved. The esti-

mate �̂10 � �1.77 is the average rate of weight loss per month at

the end of the study. The estimate �̂20 � 0.11 suggests that the
slope gets about 2 � 0.11 � .22 less steep per month (Raudenbush
& Bryk, 2002, p. 171); that is, patients lose the most weight per
month at the beginning of treatment and less toward the end (the

multiplier of 2 for the quadratic term comes from the derivative of
the equation, which gives the rate of change). The between-person
variance for the quadratic change was not significantly different
from zero (�22 � .002, 	2 � 12.85, df � 7, p � .075), but the
between-person variances for the intercept (�00 � 224.63, 	2 �
814.54, df � 7, p 
 .001) and ending slope (�11 � 0.74, 	2 �
23.99, df � 7, p � .001) were both significantly different from
zero. That is, people differed significantly in their final weight and
in their average weight loss at the last month, but the rate of weight
loss slows consistently for all patients over time. Finally, consider
the off-diagonal elements of the variance–covariance matrix of the
random effects (�). It is customary to present � as a correlation
matrix (R) because it is easier to interpret:

R � �
1.00 .073 .793

.073 1.00 .663

.793 .663 1.00
�

Results suggest that a case’s ending weight is unrelated to linear
rate of weight loss at the end of the study, but that slowing of rate
of weight loss was greater for those who ended up heavier at the
end of the study and for those who ended up with a lower rate of
weight loss per month.

These results are consistent with how Stuart (1967) described
them in his narrative. For instance, he noted that the patients
differed in their overall weights and in the amount of weight they
lost each month. Stuart did not address the gradual slowing of
weight loss over time, nor the relationships of quadratic change to
the other two parameters. So, the multilevel analysis is more
nuanced than the interpretation of the original author.

Two-Phase Multiple Baseline Design
With Count as Outcome

The second example shows how to analyze data from a two-
phase (AB) multiple baseline study. More important, it illustrates
ways of dealing with a count as a dependent variable and related
issues that may arise during analysis and interpretation. This is a
crucial overlooked factor in virtually all analyses of SCDs, because
count data is the most prevalent kind of outcome in SCD research
(Shadish & Sullivan, 2011) and because results from analyses that
assume normality for count data are likely to give incorrect point
estimates and standard errors. DiCarlo and Reid (2004) observed
the play behavior of five toddlers with disabilities (see Figure 2).
Observations took place in an inclusive classroom over approxi-
mately forty 10-min sessions. A count of independent pretend-play
actions was the target outcome behavior. There were two phases in
this multiple baseline study. For the first 16 to 28 sessions (de-
pending on the case), children were observed without intervention
(baseline phase). For the remaining sessions, children were
prompted and praised for independent pretend-play actions (treat-
ment phase). DiCarlo and Reid concluded that the intervention
increased pretend-play actions in all five children.

The dependent variable in this study is a count, which often
follows a Poisson distribution, though we discuss some alterna-
tives later. In HLM, one must also specify if exposure is constant
or variable. In this example, exposure is the amount of time for
each observed session, a constant 10 minutes for each session for
all cases. Had times varied over sessions, we would include a
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variable containing the length of each session. The Poisson model
uses a link function (i.e., a transformation of the expected outcome
that allows the model to be estimated as a linear model), and it
relates the predicted outcome to the observed dependent variable

(Cohen, Cohen, West, & Aiken, 2003). The link function for the
Poisson model is a log link. The natural model for a count with a
Poisson distribution is multiplicative, so taking the logarithm
makes it additive (linear).

The outcome in a two-phase design could be either a change in
level or a change in slope, with the latter represented by the
interaction term in the full Level 1 model:

Ln(Ŷti) � �0i � �1ia1ti � �2ia2ti � �3i(a1tia2ti) (7)

where session (a1ti was centered so that 0 represented the session
right before the phase change, a2ti is the dummy code for phase
(0 � baseline, 1 � treatment), and a1tia2ti is the product term
representing the interaction between phase and session. Conse-
quently, a value of 0 on all Level 1 variables (session, phase,
session-by-phase interaction) denotes the count of play acts during
the final baseline session. Intercepts for the computed models are
then the predicted counts at the phase change. The researcher can,
however, center a1ti at any session number. For example, to assess
treatment effects at the end of the treatment phase, one should
center at the last treatment session number. Equation 7 says that
the logarithm of predicted values is the sum of four parts: the
predicted value at the intercept (in this case, the final baseline
session), plus a term accounting for the rate of change over time,
plus a term accounting for the phase change from baseline to
treatment, plus an interaction term allowing the time effect to
differ across phases. The Level 2 model is

�0i � �00 � r0i

�1i � �10 � r1i

�2i � �20 � r2i

�3i � �30 � r3i

(8)

This simple model does not include any Level 2 predictors (e.g.,
child characteristics).

Results were that at the final baseline session, the overall aver-
age log count of independent play actions for all students is

�̂00 � �1.3838. When the log count is transformed back to counts
by exponentiating, the average number of observed independent
pretend-play actions during the final baseline session is exp(–
1.3838) � 0.2506, t � �1.99, df � 4, p � .114; that is, virtually
no independent pretend-play actions. The average rate of change in

the log count per session is �̂10 � � 0.0286, t � �0.78, df � 4,
p � .479; that is, the baseline observations are flat and not
changing over time. The average change in log count as a student

switches from baseline to treatment phase is �̂20 � 2.6680, t �
6.07, df � 4, p � .001. Thus, the average number of observed
independent pretend-play actions per session during phase 2 (treat-
ment) is exp(�1.3838 	 2.6680) � exp(1.2842) � 3.61, signifi-
cantly higher than during baseline. Last, the average interaction

effect, or change in slope between phases, is �̂30 � 0.0607, t �
0.03, df � 4, p � .109. That is, the amount of play during the
treatment phase is flat (not changing over time), just as it was
during the baseline phase. For these data, then, the best fitting
model indicates no effect of time in either phase (i.e., flat slopes)
but a significant effect of treatment, predicting more play acts per
session in the treatment phase (3.61, on average) than in the
baseline phase (0.25, on average). None of the variance compo-

Figure 2. Count of play actions by session and phase for Subjects 1–5.
Adapted from “Increasing Pretend Toy Play of Toddlers With Disabilities
in an Inclusive Setting,” by C. F. DiCarlo and D. H. Reid, 2004, Journal
of Applied Behavior Analysis, 37, pp. 203–204. Copyright 2004 by the
Society for the Experimental Analysis of Behavior, Inc.
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nents were significantly different from zero. The between-person
variances were as follows: of intercepts, �00 � 1.62 (	2 �
3.97, df � 3, p � .26); of slopes, �11 � 0.003 (	2 � 5.72, df �
3, p � .13); of the treatment effect, �22 � 0.13 (	2 � 6.25, df �
3, p � .10); and of the interaction, �33 � .00003 (	2 �
5.79, df � 3, p � .12). In fact, the variance–covariance matrix of
the random effects suggests extremely high collinearity among the
random effects:

R ��
1.000 �1.000 1.000 �.999

�1.000 1.000 �1.000 .998

1.000 �1.000 1.000 �.998

�.999 .998 �.998 1.000
�

Clearly, if we were to proceed with further analyses, a prime
candidate for change would be fixing some or all of the random
effects to zero.

The multilevel model suggests that children all started at the
same low level of play acts during baseline, that the treatment
significantly increased the overall level of play acts, that increased
exposure to treatment over time did not result in increased im-
provement over time, and that children did not differ significantly
from each other in all these things. This is more nuanced but
entirely consistent with DiCarlo and Reid’s (2004) conclusion that
the treatment helped all these children. DiCarlo and Reid also
suggested the treatment might have helped one child, Kirk, less
than the others, but the multilevel model does not support this
conclusion. Kirk’s data may appear to be more different from those
of the other children than they are when chance is taken into
account. In a Poisson distribution, as the mean increases, the
variance increases. The nonsignificant variance component for the
treatment effect in the paragraph above suggests the differences in
means over children during treatment are not distinguishable from
chance. So when, say, Nate shows a few rather high data points,
that may not reflect better treatment response than Kirk but rather
the fact that we would expect more variation in Nate’s data by
chance around his mean, even though his mean does not differ
significantly from Kirk’s mean. If these data were graphed on a
logarithmic scale to take this into account, the overall consistency
in response to treatment across children would be more apparent.

Two-Phase Multiple Baseline Design With Proportion
as Outcome and With Overdispersion

A third study (Hunt, Soto, Maier, & Doering, 2003; see Figure
3) extends the illustration of the analysis of data that comes from
a two-phase (A-B) study to a dependent variable that is a propor-
tion. In this study, the researchers observed the academic and
social participation behavior of six elementary school students in
general education classes at two schools. Three of these students
had diagnosed severe disabilities; the other three were identified as
academically at risk. The study had two phases. For the first three
to eight sessions (depending on the student), students were ob-
served without intervention (baseline). Then, teachers, aides, and
parents collaborated to plan and implement individualized support
plans including academic adaptations, communications, and social
supports for each child in the study. The remaining observations
were made during this treatment, and they took place in each
classroom over several months.

The target behavior was student initiation of interactions with
the teacher or other students. Each session was divided into 60
intervals or trials. For each trial, the researcher noted whether or
not the student initiated a social interaction with the teacher or
other students at least once. The percentage of trials where the
student did initiate interactions was computed and recorded as the
observation for each session. The dependent variable in this data
set is then a proportion (successful trials out of total trials), which
must be accommodated in the analyses and in subsequent inter-
pretation. Because this dependent variable is a proportion from a
fixed number of binary (0, 1) observations, we used a binomial
distribution when analyzing the data. The binomial is used to
model the number of events that took place where the total pos-
sible number of events is known. In this example, we know that for
each session 60 trials were observed (had the number of trials
differed across sessions or across children, a simple adaptation to
the analysis would be made). A 100% on the dependent measure
would indicate that in 60 out of 60 trials the focus student was

Figure 3. Percentage of intervals of focus student-initiated interactions to
the teachers or other students by day and phase for Subjects 1–6. Adapted
from “Collaborative Teaming to Support Students at Risk and Students
With Severe Disabilities in General Education Classrooms,” by P. Hunt, G.
Soto, J. Maier, and K. Doering, 2003, Exceptional Children, 69, p. 326.
Copyright 2003 by the Council for Exceptional Children.
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observed initiating an interaction; 50% would indicate the student
initiated interactions during 30 of the 60 trials on that day. That is,
knowledge of the number of events per session allows recovery of
the number of successes for each session.

Whereas the Poisson distribution is used to model the frequency
of an event in a given period of time, as in DiCarlo and Reid
(2004), the binomial distribution is used to model the frequency of
a binary (yes, no) event out of a total known number of possible
trials (i.e., a proportion or percentage). For both types of distribu-
tions, observations are assumed to be independent and identically
distributed, so that the outcome of one observation is not expected
to affect the outcome of another observation, and the probability of
success is the same for all trials. Unlike in normal distributions, in
which the variance is completely independent from the mean, in
binomial and Poisson distributions the variance is a function of the
mean. As noted above, for the Poisson distribution, the mean and
the variance are equal; as the mean increases, so does the variance.
Counts tend to vary more when their average value is higher
(Agresti, 1996). For the binomial, the mean and the variance are
related but not equal values; the variance is largest when the mean
proportion is .5.

These relations between the mean and variance of the distribu-
tions are sometimes violated. When count data (including both
rates and proportions) exhibit greater variability than would be
predicted by the Poisson or binomial models, the result is called
overdispersion. Overdispersion can be caused by statistical depen-
dence or heterogeneity among cases (Agresti, 1996, 2002), or it
can occur if the Level 1 model is underspecified (Raudenbush et
al., 2004). Overdispersion is measured by the overdispersion pa-
rameter 
2. If the assumptions of the distribution are met, the
overdispersion parameter will be approximately 
2 � 1. If 
2 � 1,
overdispersion is present, and if 
2 � 1, underdispersion is pres-
ent. Overdispersion can inflate the �2 goodness of fit test and cause
the standard errors of the regression coefficients to be too small,
resulting in too many Type I errors (Cohen et al., 2003).

If overdispersion is present, two ways exist to deal with it
(Cohen et al., 2003). One way assumes that the variance is a
constant multiple of the mean, called a quasi-Poisson distribution
(sometimes an overdispersed Poisson model, itself a special case

of a quasi-likelihood regression model). In this approach, the
standard errors are adjusted by the overdispersion parameter, so
the excess of Type I errors is reduced. Another way is to fit a
negative binomial model, which mixes a Poisson distribution and
a gamma distribution to model the extra variation. This option
allows the variance to be a nonconstant multiple of the mean. HLM
takes the former approach, allowing “estimation of a scalar vari-
ance so that the Level 1 variance will be 
2wij” (Raudenbush et al.,
2004, p. 111), an option that must be called specifically. If there is
no problem, the Level 1 variance will be 
2 � 1.

The Level 1 model for this study is

ln� P̂ij

1 � P̂ij
�� �0i � �1ia1ti � �2ia2ti � �3i(a1tia2ti) (9)

where P̂ij is the expected proportion of trials within a session in which
the behavior was exhibited. When one uses a binomial distribution,
HLM estimates are produced on a log odds or logit scale; to interpret
them, one typically converts them back to an odds (for the intercept)
or odds ratio where 0 is the lower bound, 1 suggests no difference, and
infinity is the upper bound. For the remaining coefficients in the Level
1 model, day of observation (a1ti) was centered before analysis, so that
0 represented the session right before the phase change; a2ti is the
dummy code for treatment phase (0 � baseline, 1 � treatment); and
a1tia2ti is the product term representing the interaction between phase
and day. Consequently, a zero on all Level 1 variables (day, phase,
day-by-phase interaction) denotes the proportion of trials in which the
target behavior was observed during the final baseline day of obser-
vation. Intercepts for the computed models are then the predicted
counts at the phase change. The Level 2 model is

�0i � �00 � r0i

�1i � �10 � r1i

�2i � �20 � r2i

�3i � �30 � r3i

(10)

Results are in Table 1. Two of four fixed effects are significant. At
the final baseline session, the overall average log odds for all

Table 1
Results of Multilevel Model on the Hunt et al. (2003) Data

Fixed effect Coefficient Standard error t ratio df p Odds ratio

00 �2.85 0.43 �6.60 5 0.000 0.06
10 �0.02 0.08 �0.25 5 0.812 0.98
20 1.79 0.41 4.37 5 0.008 5.99
30 0.01 0.08 0.10 5 0.924 1.01

Random effect
Standard
deviation

Variance
component df �2 p

r0i 0.85 0.72 5 18.13 0.003
r1i 0.10 0.01 5 4.40 �0.500
r2i 0.71 �0.51 5 8.02 0.154
r3i 0.09 0.01 5 3.52 �0.500
eti 1.72 2.95

Note. Values in this table are rounded to two decimals, but computations reported in text, such as conversions of log odds ratios to odds ratios and
proportions, were done on results to six decimals. If such conversions are done on the numbers in the table, the results will differ due to rounding error.
df � degrees of freedom.
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students is �̂00 � �2.85, yielding an odds of exp(–2.85) � 0.0576,
which converts to a proportion of P � odds/(1 	 odds) � .05. That
is, the odds at that point of a student initiating interaction are about
1:20, and the probability of an interaction is very low. For the
change from the baseline to treatment, the change in odds was
exp(1.79) � 5.989. For the average child, then, the odds rose to
.0576 � 5.989 � .345, or about 1:3. The terms for the interaction
and for sessions are small and not significant, suggesting that there
was little consistent trend up or down in general and that treatment
did not much change that compared to baseline. Only the variance
component for the intercept was significant, suggesting that chil-
dren varied significantly in how much they initiated interactions
but not in their rate of change or their treatment effect. Again, the
covariances among the random effects (not presented here) sug-
gested high collinearity; this, combined with some nonsignificant
variance components, might suggest dropping some of the random
effects. Finally, the Level 1 variance (�e

2) provides evidence about
whether data are overdispersed. According to Raudenbush and
Bryk (2002), a large value of 
2 serves as evidence of overdisper-
sion: If the binomial model were correct and data were not over-
dispersed, 
2 would be close to 1.0. Here, 
2 � 2.94, which is far
enough from 1.0 for us to assume overdispersion.

The multilevel results are consistent with the conclusions of
Hunt et al. (2003). Both the analyses and the original authors
conclude that the baseline is stable, that treatment is effective for
all students, and that increased exposure to treatment over time
does not either increase or decrease the effects of treatment in any
consistent fashion. The multilevel model adds the finding that
children differed from each other in their overall level of interac-
tion before treatment began, but that has no important impact on
the substantive question addressed in this study.

Four-Phase ABAB Designs

A fourth published study extends the illustration of analyses of
data from two-phase (AB) studies to a study with four phases
(ABAB; Lambert, Cartledge, Howard, & Lo, 2006; see Figure 4).
In this study, researchers assessed the effects of a response card
program on the disruptive behavior and academic responding of
students in two elementary school classes. The data analyzed in
this section represent instances of disruptive behavior during base-
line single-student responding (phase A), where the teacher called
on students one at a time as they raised their hands, and during a
response card treatment condition (phase B), where every student
wrote a response to each question on a laminated board and
presented them simultaneously; both phases were repeated a sec-
ond time, resulting in an ABAB design. Data collection focused on
nine fourth-grade students (four boys, five girls) with a history of
disciplinary issues. Each student was observed for ten 10-s inter-
vals during each observation session. The number of intervals
during which disruptive behaviors were observed was recorded
(with a maximum of 10 for each session). Between five and 10
sessions were recorded for each of the four phases. The dependent
variable in this data set is then a proportion (number of trials with
occurrences of disruptive behavior out of 10 total trials) for each
session. As in the analyses of data from the Hunt et al (2003)
study, this type of dependent variable may be accommodated by
using a binomial distribution.

One Way to Code a Four-Phase ABAB Design

The Level 1 model is

Ln� P̂ti

1 � P̂ti
�� �0i � �1ia1ti � �2ia2ti � �3ia3ti � �4ti(a2tia3ti)

� �5ti(a1tia2ti) � �6ti(a1tia3ti) � �7ti(a1tia2tia3ti)

(11)

where Pti is the proportion of intervals within a session in which a
disruptive behavior was exhibited, session (a1ti was centered so
that 0 represented the final session of the first baseline phase, a2ti

is a dummy code for phase (0 � baseline, 1 � treatment), a3ti is
a dummy variable to express whether a phase was part of the first
AB pair (0) or the second AB pair (1), and the product terms
represent the interactions among these main effects. By virtue of
the centering, intercepts for the computed models are predicted
proportions at the first phase change.

The unconditional (i.e., without predictors) Level 2 model is
then

�0i � �00 � r0i

�1i � �10 � r1i

�2i � �20 � r2i

�3i � �30 � r3i

�4i � �40 � r4i

�5i � �50 � r5i

�6i � �60 � r6i

�7i � �70 � r7i

(12)

Results are in Table 2, showing a host of significant fixed and
random effects. Treatment had a very large effect (20 � �5.97)
in reducing the log odds of disruptive behavior. However, every

Figure 4. Number of intervals of disruptive behavior recorded during
single-student responding (SSR) and response card treatment (RC) condi-
tions. Adapted from “Effects of Response Cards on Disruptive Behavior
and Academic Responding During Math Lessons by Fourth-Grade Urban
Students,” by M. C. Lambert, G. Cartledge, W. L. Heward, and Y. Lo,
2006, Journal of Positive Behavior Interventions, 8, pp. 94–95. Copyright
2006 by Sage Publications.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

392 SHADISH, KYSE, AND RINDSKOPF



interaction term that includes treatment is also significant, so that
the effects of treatment vary depending on AB pair and session in
a complex way. Also, nearly every variance component was also
significant, suggesting that students varied significantly, not just in
their response to treatment but in many other main effects and
interactions. This complexity is an accurate rendition, given what
we see in the graph. A clear treatment effect does seem apparent,
but the size and consistency of that effect also seem to depend on
the student, whether one looks at the first or second AB pair, and
on the session within those pairs.

This is a case in which some careful exploratory model reduc-
tion might be done to see if a simpler conclusion is warranted. This
is doubly the case because some odds ratios in Table 2 are
suspiciously high or low, raising concern about collinearity. One
sensible reduced model, for example, includes the main effect for
treatment (A vs. B), the main effect for the first pair of AB phases

compared with the second pair of AB phases, and an interaction to
see whether the effect of treatment is the same in both AB phase
changes of the study. That model found the following. The inter-
cept was significant (00 � 0.599), which converts to an odds of
1.82. That is, the odds of an interval with disruptive behavior at the
end of the first baseline is about 2:1, or two intervals with disrup-
tive behavior for each interval without. Treatment greatly reduces
disruptive behavior in general (20 � �2.20, odds ratio � 0.11),
so that the odds of an interval with disruptive behavior during
treatment drop to 1.82 � 0.11 � 0.20, or about 1:5. The order effect
is not significant (30 � 0.070, odds ratio � 1.073). The interac-
tion between treatment and order was also not significant (40 �
�0.330, odds ratio � .719), suggesting the treatment was about as
effective in the second AB pair as in the first AB pair.

Only one of the variance components was significant, the one
for the order effect ��33 � .483, df � 8, 	2 � 18.08, p � .021�,

Table 2
Results of Multilevel Model on the Lambert et al. (2003) Data

Fixed effect Coefficient Standard error t ratio df p Odds ratio Proportion

First coding method for ABAB designs
00 intercept 0.61 0.33 1.83 8 0.10 1.84 .65
10 session �0.05 0.07 �0.71 8 0.50 0.95 .49
20 treatment �5.97 1.16 �5.16 8 �0.01 0.00 �.01
30 AB pair 0.75 1.68 0.45 8 0.67 2.12 .68
40 Tmt � AB 5.97 1.57 3.80 8 0.01 393.28 .99
50 Sess � Tmt 0.69 0.30 2.26 8 0.05 1.98 .66
60 Sess � AB 0.01 0.09 0.10 8 0.92 1.01 .50
70 Tmt � AB � Sess �0.82 0.25 �3.24 8 0.01 0.44 .31

Random effect
Standard
deviation

Variance
component df �2 p

r0i intercept 0.86 0.74 8 26.12 0.001
r1i session 0.18 0.03 8 22.23 0.005
r2i treatment 2.69 7.22 8 22.68 0.004
r3i AB pair 4.49 20.20 8 34.80 �0.001
r4i Tmt � AB 1.36 1.84 8 4.77 �0.500
r5i Sess � Tmt 0.83 0.69 8 35.81 �0.001
r6i Sess � AB 0.14 0.02 8 6.17 �0.500
r7i Tmt � AB � Sess 0.60 0.36 8 13.83 0.086
eti 1.46 2.15

Fixed effect Coefficient Standard error t ratio df p Odds ratio

Second coding method for ABAB designs
00 intercept 0.55 0.24 2.25 8 0.055 1.73
10 A1 to B1 �1.85 0.64 �2.88 8 0.021 0.16
20 B1 to A2 2.57 0.44 5.80 8 �0.001 13.01
30 A2 to B2 �2.28 0.45 �5.12 8 �0.001 0.10
40 session �0.04 0.05 �0.91 8 0.388 0.97

Random effect
Standard
deviation

Variance
component df �2 p

r0i intercept 0.56 0.31 8 19.19 0.014
r1i A1 to B1 1.65 2.72 8 27.55 0.001
r2i B1 to A2 0.92 0.85 8 13.77 0.087
r3i A2 to B2 0.90 0.80 8 10.91 0.206
r4i session 0.12 0.01 8 17.73 0.023
eti 1.64 2.69

Note. Values in this table are rounded to two decimals, but computations reported in text, such as conversions of log odds ratios to odds ratios and
proportions, were done on results to six decimals. If such conversions are done on the numbers in the table, the results will differ due to rounding error.
df � degrees of freedom.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

393SINGLE-CASE DESIGNS AND MULTILEVEL MODELS



suggesting that the order effect varied over students. The remain-
ing variance components were �00 � .063�df � 8, 	2 �
10.34, p � .241� for the intercept, �22 � .507�df � 8, 	2 �
13.70, p � .089� for treatment, and �44 � .751�df � 8, 	2 �
8.26, p � .408� for the interaction between order and treatment.

Alternative Method of Coding Phases
in ABAB Designs

Other methods of coding an ABAB design are possible, depend-
ing on what quantities are of interest. Here, we illustrate an
alternative and potentially useful coding method, which we call
step coding. It resembles dummy coding, in that it uses only the
numbers 0 and 1, but the coding is different in other respects.
Suppose that we want the intercept to represent behavior during
the baseline phase of the study, and we want other effects to
measure the changes as we go from one phase to another. That is,
one effect should measure the change from A1 (the first A phase)
to B1 (the first B phase); another effect should measure the next
change, from B1 to A2 (the second A phase); and the final effect
should measure the final change, from A2 to B2 (the second and
final B phase). This requires three dummy variables that start with
the value 0 and then change to 1 with successive changes in
phases: the first dummy variable a1ti � 0 during phase A1, and
then a1ti � 1 for phases B1, A2, and B2: variable a2ti � 0 for
phases A1 and B1, then a2ti� 1 for phases A2 and B2; and, finally,
a3ti � 0 for phases A1, B1, and A2 and a3ti� 1 for phase B2. Thus,
they form a pattern resembling steps. The meaning of these effects
depends on all of them being present in the model; removing any
of them changes the meanings of the remaining effects, because
they are not orthogonal. In the following models, we also included
a term a4ti for session, to allow for time trend, coded so that 0 is the
last session in the first phase of the study (phase A1). In addition,
we allowed for overdispersion (as we did in fitting previous
models).

This coding then allows us to specify the following multilevel
model. At Level 1,

ln� P̂ti

1 � P̂ti
�� �0i � �1ia1ti � �2ia2ti � �3ia3ti � �4ia4ti

(13)

where the terms are as described above. The unconditional Level
2 equations are now

�0i � �00 � r0i

�1i � �10 � r1i

�2i � �20 � r2i

�3i � �30 � r3i

�4i � �40 � r4i

(14)

This model says that (a) the logarithm of the odds of showing
disruptive behavior is a function of a linear trend, as well as
changes due to shifts between phases, and (b) each of these effects
may vary across individuals.

The results for this model are in Table 2. The average log odds
in the first baseline phase was .546. Exponentiating this gives
exp(.546) � 1.727, which is the odds of showing disruptive

behavior; converting this to a proportion using P � odds/(1 	
odds) suggests that one would observe disruptive behavior about
63% of the time, about the same as with the first method of coding.
The average change going from one phase to another was signif-
icant for each such change. For the change from the first baseline
to the first treatment, the change in odds was exp(�1.854) � .157.
For the average child, the odds dropped to 1.727 � .157 � .271, or
about 1:4. That is, for every observation during which there is a
disruptive behavior, there are roughly 4 observations with no
disruptive behavior, a huge change from baseline. The change
from first treatment to second baseline changes the odds by an
average of exp(2.566) � 13.011 times. So, during the second
baseline, the odds are 1.727 � .157 � 13.011 � 3.528, suggesting a
ratio of disruptive to nondisruptive observations of about 3.5: 1.
The final phase change (back to B2) reduces the odds by a factor
of exp(�2.281) � .102, so the odds for that phase are 1.727 �

.157 � 13.011 � .102 � .360, or about one observation with
disruptive behavior for every three without such behavior. The
term for sessions is small and not significant, with no consistent
linear trend up or down. However, for each of the phases the odds
are reduced by about 3% (multiplied by the odds ratio of .97 for
session). Finally, the random effects show that intercepts, the
effect for session, and the A1-B1 effects all vary significantly
across individuals but that B1-A2 and A2-B2 changes do not. The
estimate of 
2 (� 2.69) is well above the expected value of 1 for
the model without overdispersion.

Both ways of coding the Lambert et al. (2006) study yield
results that are reasonably consistent with the conclusions of the
original authors. They concluded that the treatment was effective
in general, that the shifts from phase to phase all reflected the
changes in outcomes that the step coding above suggested, and that
results were somewhat variable over students with larger effects
for five students and smaller effects for four others. However, the
step coding provides a statistical test of the requirement to dem-
onstrate a treatment effect at least three times what the What
Works Clearinghouse Standards (Kratochwill et al., 2010) sug-
gests is best practice for SCDs.

Alternating Treatment Designs With Three Conditions

Resetar and Noell (2008) used an alternating treatment design to
compare the effectiveness of (a) no reward (NR), (b) a multiple-
stimulus-without-replacement (MSWO) reward condition, and (c)
a teacher-selected (TS) reward condition in identifying reinforcers
for use to help students improve in mathematics (see Figure 5).
The four students were typically developing elementary-school
children with performance deficits in mathematics. The outcome
was the number of digits correctly answered in 2 minutes on a test
of subtraction problems, which should be modeled with the same
approach as in the second example, a Poisson distribution having
a constant exposure with a log-link function.

If an alternating treatments design has only two conditions, it
would be appropriately analyzed with the Level 1 model in Equa-
tion 7 and the Level 2 model in Equation 8. But this example has
three conditions. This changes the analysis in two ways. First, one
could compare all possible pairs of conditions in three separate
multilevel analyses: (a) TS versus MSWO, (b) TS versus NR, and
(c) MSWO versus NR. In that case, one would still use Equations
7 and 8. Unfortunately, this option has problems. Consider the
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analogy to a one-way analysis of variance in a between-subjects
experiment with three conditions. We could analyze such data with
three t tests, one test for each pair of conditions; but we do not do
so because the experiment-wise Type I error rate becomes inflated.
Instead, we conduct an omnibus one-way analysis of variance that
holds that error rate to the desired level. The same logic applies to
the Resetar and Noell SCD data. We reject the all-possible-pairs
option, because it would inflate Type I error rates, and instead use
an omnibus analysis in which all conditions are analyzed in one
model.

Second, the models we propose for analyzing such data each
have two terms related to the treatment effect. The analysis should
consider the significance of those two terms taken jointly. This can
be done in two ways in HLM. One is a general linear hypothesis
test that examines whether the two terms are jointly significant,
tested with a �2 test with df � 2. The other is a model comparison

test that takes the difference in deviances for two nested models,
one with the two treatment terms and one without them, and
compares that difference to a �2 distribution with df � 2. We had
difficulty getting useful estimates of the latter test, probably due to
small sample sizes, so only the former are reported here.

The overall analysis can be done several ways. One analysis
uses the following Level 1 model:

Ln(Ŷti) � �0i � �1ia1ti � �2ia2ti � �3ia3ti � eti (15)

where a1ti is session (centered at Session 18 in this case to repre-
sent a time near the end of the study for all participants), where
a2ti� 0 for NR and a2ti � 1 for both treatments, and where a3ti�
0 for NR and TS and a3ti � 1 for the MSWO treatment. Then, the
parameter �2i would represent NR versus TS, and �3i would
represent TS versus MSWO. The Level 2 model is

�0i � �00 � r0i

�1i � �10 � r1i

�2i � �20 � r2i

�3i � �30 � r3i

(16)

The Level 1 model says that the outcome is a function of change
over time (any trend over sessions) plus an effect from going to the
NR (baseline) to TS (first treatment) plus an effect going from TS
to MSWO (second treatment), and Model 2 allows these effects to
vary over cases.

The results for this model are shown in Table 3. The general
linear hypothesis test suggests the two treatment terms are jointly
not significant. Just as we would normally not follow a nonsignif-
icant analysis of variance with follow-up tests comparing individ-
ual conditions, we should not now interpret the significance to the
two individual treatment terms. However, for pedagogical reasons,
we can observe that the nonsignificant omnibus test is consistent
with the individual coefficients, showing that neither the change
from NR to TS nor the one from TS to MSWO affected the
outcome significantly. Resetar and Noell (2008) did not draw a
conclusion about overall treatment effectiveness like the one in
this analysis. Rather, they said that the treatment seemed to work
for two children and not for two others. This might be consistent
with the significant variance component of �22 � 0.63, which
suggests that children vary significantly in their response to TS
compared to NR. We will return to this shortly.

A second way to produce an omnibus analysis uses the Level 1
model in Equation 15 but where a3ti is coded using effects coding.
This time a3ti� 0 for NR, a3ti� �.5 for TS, and a3ti � .5 for the
MSWO treatment. Under this coding, the parameter �2i is the
difference between NR and the average of the two treatments, and
�3i is the difference between the two treatments. The Level 2
model stays the same. The results for this model are also in Table
3. The interpretation of this model is nearly identical to that from
the previous coding. The general linear hypothesis test again
suggests the two treatment terms are not jointly significant. Fur-
ther, outcomes for baseline (NR) do not differ significantly from
those for the average of the two treatments, and treatments do not
differ from each other. Finally, in both models the estimate of 
2

(� 3.58) is still above the expected value of 1 for the model
without overdispersion.

Resetar and Noell (2008) said that “the mean number of digits
correctly answered was greater in the MSWO-selected reward and

Figure 5. Number of digits correct in two minutes across reward condi-
tions for all participants. MSWO � multiple stimulus without replacement.
Adapted from “Evaluating Preference Assessments for Use in the General
Education Population,” by J. L. Resetar and G. H. Noell, 2008, Journal of
Applied Behavior Analysis, 41, p. 450. Copyright 2008 by the Society for
the Experimental Analysis of Behavior, Inc.
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the teacher-selected reward conditions relative to the no-reward
condition for 2 of the 4 participants” (p. 447), who are Emma and
Kaleb in Figure 5. Here, we run an exploratory analysis both to test
that claim and to motivate some observations about exploratory
analyses in SCDs in the Discussion section. To do this we continue
to use effects coding but change the Level 2 model to add a
dummy variable x2i to the third equation in (16) that distinguishes
Emma and Kaleb from the other two participants:

�0i � �00 � r0i

�1i � �10 � r1i

�2i � �20 � �21x2i � r2i

�3i � �30 � r3i

(17)

The results are essentially unchanged. The treatment is not signif-
icantly more effective for Emma and Kaleb than for the other two
participants (20 � .10, t � 0.84, p � .49).

One could also code this kind of design a third way, with two
dummy variables for treatment, where each treatment is then
compared to the NR condition. The problem with that option is that
the two treatments are not compared to each other. A combination
of more than one of the analyses described in this section covers all
bases, however. Rindskopf and Ferron (in press) show additional
ways to code this design.

Changing Criterion Designs

Ganz and Flores (2008) used a changing criterion design to
investigate the use of visual strategies to increase verbal behavior
in three children with autistic spectrum disorder when those chil-
dren were in play groups with typically developing peers. The play
group sessions occurred 4–5 times per week over 4 weeks for 30
minutes each. Prior to each play group session, the researcher
presented each child with one (or more) statement(s) on a script

Table 3
Results of Multilevel Model on the Resetar and Noell (2008) Data

Fixed effect Coefficient Standard error t ratio df p
Event rate

ratio

First coding method for alternating treatment designs
00 intercept 2.16 0.58 3.74 3 .07 8.69
10 session �0.01 0.01 �1.04 3 .38 0.99
20 NR to TS 0.79 0.42 1.86 3 .15 2.20
30 TS to MSWO 0.12 0.12 1.03 3 .38 1.13

Random effect
Standard
deviation

Variance
component df �2 p

r0i intercept 1.11 1.24 3 35.16 �.001
r1i session 0.02 0.00 3 5.09 .164
r2i NR to TS 0.79 0.63 3 23.85 �.001
r3i TS to MSWO 0.09 0.01 3 1.20 �.500
eti 1.89 3.58

Significance of treatment terms taken jointly
General linear

hypothesis test �2 � 4.43 df � 2 p � .107

Fixed effect Coefficient Standard error t ratio df p
Event rate

ratio

Second (effects) coding method for alternating treatment designs
00 intercept 2.16 0.58 3.70 3 .07 8.65
10 session �0.01 0.01 �1.04 3 .38 0.99
20 NR vs. Tmt 0.85 0.43 1.97 3 .14 2.35
30 TS vs. MSWO 0.12 0.12 1.02 3 .38 1.13

Random effect
Standard
deviation

Variance
component df �2 p

r0i intercept 1.12 1.26 3 35.44 �.001
r1i session 0.02 0.00 3 5.09 .163
r2i NR vs. Tmt 0.82 0.68 3 27.80 �.001
r3i TS vs. MSWO 0.09 0.01 3 1.20 �.500
eti 1.89 3.58

Significance of treatment terms taken jointly
General linear

hypothesis test �2 � 4.41 df � 2 p � .108

Note. Values in this table are rounded to two decimals, but computations reported in text such as conversions of log odds ratios to odds ratios and
proportions were done on results to six decimals. If such conversions are done on the numbers in the table the results will differ due to rounding error.
NR � no reward; TS � teacher selected; MSWO � multiple stimulus without replacement; Tmt � treatment; df � degrees of freedom.
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card and prompted the child to repeat the statement until he or she
was able to do so without prompting. Then, during the play groups,
the researcher again prompted the child once with the practiced
script card, except during baseline when no prompts occurred.
Prompting on that script card stopped when the child recited the
scripted phrase, or when the prompting interval ended. In the latter
case, the researcher waited one interval before trying again. After
baseline, a low criterion for success was set (e.g., that the child
respond to one prompt card that was presented during a 20-s
interval of play). When the child had successfully done this in
three consecutive sessions, the criterion increased to prompt the
child to respond to additional prompt cards (e.g., two cards pre-
sented in two different intervals).

From videotapes of the sessions, the researchers recorded the
occurrence of several outcomes; this analysis uses the outcome
called intervals with any speech (see Figure 6). In each of 15
consecutive 20-s intervals during each play session, the researcher
recorded whether the child uttered any speech at all. So the count
could range from 0 to 15, and from this the researchers computed
the percent of intervals during which an outcome occurred. Like
the third example in this article, then, this outcome has a binomial
distribution, and so we use a logit link function.

These data could be analyzed in two ways (we ignore the
generalization phase in Figure 6 in these analyses). One would be
to compare outcomes during baseline to those during all of the
treatment phases without regard to the changing criteria. That
model is the same as in Equations 7 and 8. The term for the
interaction between session and the baseline-to-treatments change
is useful to test the hypothesis that, compared to baseline, increas-
ing the criterion over time during treatment increases the slope of
the data points across the three criterion intervals. Results are in
Table 4. None of the four predictors were significant, but two of
the four variance components were. The between-person variance
of intercepts is �00 � 2.17 (	2 � 11.03, df � 2, p � .004), and the
between-person variance of the treatment effect is �11 � 5.61
(	2 � 20.87, df � 2, p 
 .001). The former suggests that the
children displayed significantly different levels of speech at the
end of baseline, and they had significantly different responses to
treatment even though the effect of treatment was not significant
on average. This data set displays virtually no overdispersion. We
reran it without the overdispersion option, and the results were
nearly identical.

A second way to analyze the data would be to use the step
coding from Equations 13 and 14. The models for this example are
identical to those two equations, but the interpretation differs. That
is, one effect measures the change from baseline to the first
treatment criterion phase; another effect measures the change from
the first to the second treatment criterion phase; and the final effect
measures the change from the second to the third criterion phase.
This requires three dummy variables: variable a1ti � 0 during
baseline and then a1ti � 1 for all three treatment phases; variable
a2ti � 0 for the baseline and first treatment phase and then a2ti� 1
for the second and third treatment phases; and, finally, a3ti � 0 for
baseline and the first two treatment phases and a3ti� 1 for the last
treatment phase. This model yielded no significant effects for any
predictors or variance components except for the between-cases
variance in intercepts �00 � 1.29 (	2 � 7.61, df � 2, p 
 .022).
Overdispersion was somewhat higher than it should be.

We can compare these findings to three conclusions from Ganz
and Flores (2008). First, in the abstract of their article Ganz and
Flores concluded that results indicated improvement across all
three children in intervals with any speech. Results from the
multilevel analysis find no significant effect over the three stu-
dents. Second, when Ganz and Flores presented the results for this
particular outcome in text, they concluded that the treatment was
effective for Max but not for the other two children. This is
consistent with the results in the first multilevel analysis that the
children had significantly different responses to treatment, but the
nonsignificant overall treatment effect in the multilevel model
cautions us that the treatment effect may not be strong enough in
general to be conclusive. Third, Ganz and Flores did not comment

Figure 6. A changing criterion design to test the effect of an intervention
to increase verbal behavior in children with autistic spectrum disorder on
two outcomes: Responses and Intervals with Any Speech. Adapted from
“Effects of the Use of Visual Strategies in Play Groups for Children With
Autism Spectrum Disorders and Their Peers,” by J. B. Ganz and M. M.
Flores, 2008, Journal of Autism and Developmental Disorders, 38, p. 936.
Copyright 2008 by Springer.
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on the overall effectiveness of using the changing criterion design.
In discussing this outcome variable they did comment on some
increases over time consistent with increased criteria; however,
they did not discuss any implications of inconsistencies where
outcome decreased with increased criteria or increased at a differ-
ent time than the increased criteria. Results from the multilevel
analysis suggest that the changing criteria probably did not sys-
tematically change the outcome levels over time.

Discussion

Multilevel models offer attractive features for the statistical
analysis of SCDs. They are well developed statistically, provide
results that are generally (but not always) consistent with the
conclusions of SCD researchers, allow formal tests of how much
cases differ from each other through examination of the variance
components, and are very flexible in the kinds of data they can
address. However, many difficult issues arise in the analysis of
even fairly simple-looking data patterns. In this discussion we
examine the most salient of those issues in order to suggest the
kind of future research that should done in order for multilevel
models to reach their full potential in the analysis of SCDs.

Statistical Power

We have located only one direct study of the statistical power of
multilevel analyses of SCD data (Jenson et al., 2007). Jensen et al.
used computer simulations to test both Type I and Type II error
rates in AB and ABAB designs. However, several features of the
simulations make them less useful. First, the simulations assumed
the data were normally distributed, which is almost never the case
in SCDs in the social sciences (Shadish & Sullivan, 2011). Second,
the simulations modeled power with 15 cases, 40 cases, and 80
cases. This is more than any of the SCDs published during 2008 in
the large Shadish and Sullivan (2011) survey, where the median
number of cases was three and the maximum observed was 13.
That being said, for 15 cases, power was .47 when the case had
five baseline and 10 treatment data points and an autocorrelation of
.40 but rose to .76 if the autocorrelation was zero. Increasing the
number of baseline (10) and treatment (20) data points increased
power to .78 and .99 for autocorrelations of .40 and .00, respec-
tively. Presumably, power would be far lower for more realistic
numbers of cases.

The general multilevel modeling literature does contain studies
of power. The most common of these concerns power for studies

Table 4
Results of Multilevel Model on the Ganz and Flores (2008) Data

Fixed effect Coefficient Standard error t ratio df p Odds ratio

First coding method for alternating treatment designs
00 intercept �1.41 0.92 �1.52 2 .27 0.24
10 session �0.19 0.45 �0.42 2 .72 0.83
20 treatment 1.25 1.45 0.86 2 .48 3.50
30 interaction 0.26 0.49 0.53 2 .65 1.30

Random effect
Standard
deviation

Variance
component df �2 p

r0i intercept 1.47 2.17 2 10.78 .005
r1i session 0.63 0.40 2 4.00 .133
r2i treatment 2.37 5.60 2 20.42 �.001
r3i interaction 0.72 0.52 2 5.00 .080
eti 1.01 1.02

Fixed effect Coefficient Standard error t ratio df p Odds ratio

Second (step) coding method for alternating treatment designs
00 intercept �1.07 0.73 �1.47 2 .281 0.34
10 session 0.04 0.18 0.20 2 .859 1.04
20 criterion 1 0.40 0.69 0.58 2 .520 1.49
30 criterion 2 0.59 0.92 0.64 2 .586 1.81
30 criterion 3 �0.03 0.99 �0.03 2 .981 0.97

Random effect
Standard
deviation

Variance
component df �2 p

r0i intercept 1.13 1.29 2 7.61 .022
r1i session 0.22 0.05 2 1.98 �.500
r2i criterion 1 0.70 0.49 2 1.47 �.500
r3i criterion 2 1.21 1.47 2 3.01 .221
r4i criterion 3 1.41 1.98 2 3.69 .156
eti 1.28 1.64

Note. Values in this table are rounded to two decimals, but computations reported in text, such as conversions of log odds ratios to odds ratios and
proportions, were done on results to six decimals. If such conversions are done on the numbers in the table, the results will differ due to rounding error.
df � degrees of freedom.
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in which persons are nested within some aggregate like classes
(Berkhof & Snijders, 2001), often in the context of a group-
randomized trial to test treatment effects (Raudenbush, 1997;
Raudenbush & Liu, 2001; Snijders & Bosker, 1993; Zhang &
Willson, 2006). In these studies the focus is the power to detect a
treatment effect between groups. In general, power in such studies
depends on the effect size, the number of clusters in each treatment
condition, the number of individuals measured in each cluster, and
the intracluster correlation coefficient (Bingenheimer & Rauden-
bush, 2004). For a fixed budget—that is, where the total number of
persons that can be included is fixed and the question is how to
divide those persons over aggregates—the general finding is that
having more aggregates improves power more than having more
persons within each aggregate. Raudenbush and Liu (2001) are the
only authors to look at power as a function of frequency of
observation over time, assuming a between-groups standardized
mean difference of .40. They found that power increased with
more time points but appeared to asymptote at about the highest
number of time points that they studied; that is, six observations
over time for 100 persons in treatment and control groups where
power was .43. They concluded that increasing the number of
persons improved power more than increasing the number of
observations over time. However, six observations over time is
considerably shorter than most SCDs (Shadish & Sullivan, 2011).

To the extent that this literature applies directly to SCDs, power
in multilevel models in SCDs for a given effect size would depend
on the number of cases (n), the number of time points measured
within each case (t), the effect size, and the intraclass correlation
defined as the ratio of between-case variance to total (within-case
plus between-case) variance. Unlike in the between-groups litera-
ture, power in SCDs would also depend on the autocorrelation.
The recommendation would be that increasing the number of cases
will yield more power than increasing the number of time points
within cases, although that recommendation is somewhat incon-
sistent with the intention of SCDs to intensively study relatively
few cases over longer times. Further, if that literature applied
directly, we might expect a recommendation that the total sample
size, N � t � n, would need to fall at least in the range of
500–600, such as 5 cases and 100 time points or 20 cases and 30
time points (Snijders & Bosker, 1993). It might need to be much
higher, as much as 500–1,000, using Raudenbush and Liu’s (2001)
findings. This would be much higher than most SCD studies ever
achieve (Shadish & Sullivan, 2011). However, in the group-
randomized literature, adding a covariate such as a pretest on the
outcome variable can affect power significantly, reducing the total
sample size needed to as few as N � t � n � 100 under some
conditions (Raudenbush, 1997), such as 5 cases with 20 time
points. It may also be the case that adding covariates can improve
the power of SCDs, a topic worth further research.

However, past results may not apply well to the SCD context,
for several reasons. First, all these studies refer to power to detect
a between-groups treatment effect, but SCDs require power to
detect a within-person treatment effect. Second, it seems likely that
the effect sizes observed in SCDs may be higher than those
observed in the typical between-groups cluster-randomized trial.
The latter is a highly preliminary suggestion based on recent work
to develop a standardized mean difference statistic for SCDs that
is in the same metric as those for randomized experiments
(Hedges, Pustejovsky, & Shadish, 2012; Shadish, 2012). Larger

effects would not be surprising, given that SCD researchers have
the luxury of devoting resources intensively to producing a large
effect in each case. The likely effect of this is to decrease the total
N needed in SCDs, perhaps substantially given that past multilevel
power analyses (Raudenbush, 1997; Snijders & Bosker, 1993)
have assumed rather small effect sizes. Fourth, we know little
about the size of the intraclass correlation in SCDs (as defined
above) compared to those that are common in the group-
randomized trials literature, and it is difficult to say what the effect
of this will be for power.

Most applications of multilevel models to SCDs that we know
have found significant treatment effects, suggesting very indirectly
that power is not a problem. Unfortunately, that impression may be
misleading. Muller et al. (2007) showed that mixed models of the
kind used in the present article can have inflated Type I error rates
for detecting such effects, especially in small samples and when
the error covariance matrix is misspecified. So, the apparent power
in all these examples may instead reflect inflated Type I errors.
Muller et al. (2007) suggested using multivariate repeated-
measures tests instead of mixed models because those tests have
very good properties regarding Type I and Type II errors. How-
ever, their work was limited to normally distributed data, so we do
not know how well it applies to data distributed in other ways like
Poisson or binomial, as is usually the case in SCDs.

Finally, all of the preceding discussion refers to the power to
detect a treatment effect. Another power issue concerns detecting
a significant between-case variance component. In the SCD liter-
ature, power to detect between-case variation might be expected to
be low, given the small number of cases in most SCDs (Shadish &
Sullivan, 2011). That being said, Van den Noortgate and Onghena
(2003a) detected significant treatment variance components in a
data set with six cases and about 30 time points per case. In the
examples in the present article, half the variance components were
statistically significant. One might then hypothecate that power is
at least not abysmally low to detect variance between cases. Again,
the results of Muller et al. (2007) suggest caution in that conclu-
sion, even though Miller et al. did not study power for variances.

Taking all this into account, then, an entire program of
research is needed to clarify power when applying multilevel
models to SCDs. It should address power to detect treatment
effects and variance components, as discussed above, but also
to detect covariates at Level 1 or Level 2, more complex phase
shifts for the various codings we illustrated in the examples, and
how various outcome metrics affect power—all while varying
important independent variables such as the number of cases,
number of time points, intraclass correlation, and autocorrela-
tion.

Autocorrelation

SCD data consist of consecutive observations over time
within cases. As such, the serial correlation of those data points
over time must be considered (Weiss, 2005). Huitema (2011)
did this in his application of ordinary least squares regression to
the analysis of SCDs, testing whether a model with an autore-
gressive component fits better than one without. We have not
done so in the present paper for two reasons. One reason is
merely practical, that the HLM computer program cannot do so
when the number of cases is smaller than the number of time
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points, as will typically be the case in SCD research. Even if it
could, it is not clear one could generate good estimates given
the small samples involved. The HMLM module within HLM6
can include a first-order autoregressive term in the multilevel
model, but we could not get such models to converge in the data
sets in this article. Van den Noortgate and Onghena (2003a,
2003b, 2007, 2008) have been more successful in using SAS
PROC MIXED to estimate a model with a first-order autore-
gressive term (note the 2007 article corrects the code from the
2003 articles). However, because most SCD data in psychology
and education are either counts or percentages best treated as
Poisson or binomially distributed, the proper analysis should
use SAS PROC GLIMMIX rather than MIXED. We were unsuc-
cessful in estimating an autoregressive model in GLIMMIX. The
WinBUGS computer program will also estimate autoregressive
models, and we are currently working on such analyses.

However, a second reason for not modeling an autoregressive
model is that the models presented in this paper actually do take
into account the correlation between errors, though that may not
be immediately apparent (Hedeker & Gibbons, 2006, Chapter 7;
Singer & Willett, 2003, Chapter 7). The reason is that a model
with random intercept and/or slopes, as was the case for all the
models in this paper, induces an error covariance structure for
the data. For instance, a model with only a random intercept is
essentially like a repeated-measures analysis that assumes sphe-
ricity. As one adds more random effects for time varying slopes
(time, treatment, interaction), the error covariance structure
becomes reasonably complex. At least four issues must be
considered in the choice between dealing with serial depen-
dence with autocorrelation, random effects, or both.

First is whether overall model fit, as measured by such criteria
as deviance or the various information criteria, much changes over
these two choices. Some literature suggests that an autoregressive
model and a random effects model tend to fit the data about
equally well. Singer and Willett (2003) gave such an example in
which the best fitting covariance structure (a Toeplitz structure) fit
only 2.2 points better using a Bayesian information criterion (BIC)
than the standard random effects error structure we used in this
paper, a difference that would be considered weak according to
Raftery’s (1995) criteria. Of course, determining whether this
holds more generally will require further research.

Second is that the researcher is frequently most interested in the
fixed effect estimates in the model; for instance, whether the
treatment was effective. Those estimates are unbiased under both
error covariance structures. Singer and Willett (2003) suggested
that for purposes of the fixed effects estimates, refining the error
structure is like “rearranging the deck chairs on the Titanic” (p.
264).

The third issue is that the precision of the fixed effects
estimates can be affected by the choice of error covariance
structure. The less accurately the error structure is represented,
the more inflated the Type I errors will be (Gurka et al., 2011).
On the one hand, ignoring random effects and autocorrelation is
clearly problematic. On the other hand, a completely unstruc-
tured error covariance matrix will provide the best precision,
and a model that allows random intercepts and slopes plus an
autoregressive component should also do very well. Estimating
such models, however, will often require a large data set from
a very well-designed study, and even then estimation may be

difficult. In that respect, Hedeker and Gibbons (2006) said that
the choice of error covariance structures is “more a matter of
avoiding bad models, and selecting a reasonable model from a
number of possible alternative models” (p. 124). To judge from
Gurka et al. (2011), a model with random intercepts and slopes
without an autoregressive component might often be a reason-
able model. It tended to produce comparable precision esti-
mates and inferences compared to an unstructured model, an
autoregressive model, or the use of sandwich error estimators
(which themselves deserve more study in the present context).
That being said, so little is known about the different circum-
stances under which these models will work best that we
caution that one cannot simply assume that a random intercept
and slopes model will always do well.

The fourth issue is less statistical and more substantive. The
random intercept and slopes model implies that the order of the
observations is unimportant. In the SCD literature, this might
suggest that errors are correlated not because they are adjacent
in time but because of some factor within the case that is
independent of time. The autoregressive model assumes that the
order of observations is important; typically, that observations
that are closer to each other are more highly correlated than
observations further apart. This might suggest a process that is
time dependent rather than person specific. So, the choice
between error covariance models should depend on the re-
searcher beliefs about that underlying process. For example, it
may be that some children produce more consistent responding
than other children, so that it is this between child variability in
consistency that is responsible for the correlated errors, not the
fact that one observation occurs closer or further away from the
other. Of course, we know virtually nothing about these under-
lying processes for either the random effects or autoregressive
cases, but we find both scenarios to be plausible.

Our own belief is that the model should have as many random
effects as necessary before trying to model the autocorrelation.
Autocorrelation and model specification are very closely re-
lated. Omitting a necessary term from the multilevel model, for
example, a quadratic trend term at Level 1 or a random effect
for slopes, can produce a larger autocorrelation than is really in
the data. Because one can never be sure that all the necessary
terms have been included, the conundrum is that the researcher
can never be sure whether an autocorrelation is due to a true
underlying autoregressive covariance structure or to the failure
to include the correct fixed effects predictors and random
effects in the model. After all fixed and random effects are in
the model, adding an autoregressive component tests the right
thing, which is the within-subject autocorrelation. Without ran-
dom intercept and slopes, an autoregressive term will not test a
pure within-subject autocorrelation and will be inflated. How-
ever, as we said earlier, it may not prove feasible to test models
with random effects and autoregressive components, given the
sample sizes available to SCD researchers— or indeed to many
longitudinal researchers. Hence, it is reassuring that the infer-
ences one obtains are probably plausible as long as one has
avoided a badly underspecified error covariance model. Sensi-
tivity analyses are frequently useful in such circumstances,
allowing one to see if the effects are consistent over various
ways of specifying the model.
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More on Outcome Assessment and
Data Analysis in SCDs

This article suggests how to model a few of the many kinds of
outcomes in SCD research using normal, Poisson, and binomial
distributions. For the latter, we have shown cases with constant
exposure or constant numbers of trials, but they can also be
implemented with variable exposure or trials. An example would
be when the researcher changes how many opportunities to re-
spond a case has from session to session, as might happen with an
intervention to improve writing where the number of items on a
writing assessment varies from session to session. Coding a vari-
able with the number of trials for each session would allow the
analysis. Other distributional assumptions for different kinds of
SCD outcomes include Bernoulli for binary data and multinomial
for outcomes that are either ordered or nominal categories—
though the kind of data requiring these models is rare in SCD
research. The Bernoulli sampling model applies when each case
has only a binary (1/0) response during each session, and the link
function is a logit, as in Equation 9. We have not seen such an
outcome used in SCD research in surveys of the literature (Shadish
& Sullivan, 2011; Smith, 2012). We also have not seen the use of
a nominal category as an outcome in SCD research (e.g., whether
a case falls into one of several diagnostic categories over time). If
such an outcome were to occur, it could be analyzed with a
multinomial sampling model with a multinomial logit link func-
tion. We have seen the use of ordered categories as outcomes.
Jostad, Miltenberger, Kelso, and Knudson (2008), for example,
trained children with an intervention designed to prevent them
playing with firearms. The outcome was four ordered categories
where 0 � touched the firearm, 1 � did not touch the firearm, 2 �
did not touch, left the area within 10 seconds, and 3 � did not
touch, left the area, and told an adult. The model is multinomial
with a cumulative logit link function. Raudenbush and Bryk (2002,
Chapter 10) provided details of the model, Raudenbush et al.
(2004) showed how the models can be estimated in HLM, and
Rindskopf and Ferron (in press) showed an application to SCDs.

Past applications of multilevel modeling to SCDs have not much
discussed these matters, certainly not in detail. Nor is the issue
specific to multilevel models of SCDs. Proper treatment of out-
come metrics is crucial for the other analytic approaches to anal-
ysis of SCDs, whether they are ordinary regression, time series
analysis, or effect size measures (Houle, 2008; Kratochwill &
Levin, 2010; Maggin et al., 2011; Parker et al., 2011; Shadish &
Rindskopf, 2007; Shadish et al., 2008). A full treatment of the
problems and their solutions is beyond the scope of this article, but
we can suggest some of issues that need to be addressed in future
research. One is to categorize the many kinds of outcomes used by
SCD researchers. For instance, these include frequency counts
(e.g., number of words spelled correctly), rate (frequency of be-
havior divided by time: e.g., average rate of behavior per minute),
percent of intervals in which behavior occurred and did not occur
(using whole interval, partial interval, or point time sampling
methods), duration of behavior (how long a behavior lasts), and
latencies (elapsed time from offset of an environment event to the
onset of behavior), to name just a few. Examples of such catego-
rizations are in Shadish and Sullivan (2011) and Smith (2012).

This is a start but not enough. Future surveys should code
outcome variables guided by the statistical issues pertinent to each.

Here is one example. As previously mentioned, using Poisson and
binomial models requires some knowledge about the number of
trials in each observation session. In the examples we used, the
authors reported that explicitly. Sometimes it is not reported. Yet,
if we know that percents are based on a constant number of trials,
we can usually estimate most important quantities without know-
ing what that number is. However, with variable numbers of trials
(or time periods of measurement), such adjustments are not pos-
sible if the author has not reported the number of trials. So, in
coding outcomes it would help to distinguish cases that should be
treated with a Poisson or binomial sampling model but where the
article provides no information about exposure or number of trials.

In addition to considering outcome metric, the categorization
should consider the method used for sampling outcome data. Here
are examples. Altmann (1974), a primatologist rather than a SCD
researcher, provided an informative comparison of the benefits and
problems associated with different behavior sampling methods.
Mann, Ten Have, Plunkett, and Meisels (1991) discussed different
approaches to time sampling to estimate frequency or proportions
of time that some behavior occurs, showing that some approaches
to time sampling are likely to produce erroneous conclusions.
Rapp et al. (2007) compared various methods of continuous du-
ration recording with such approximations as partial interval re-
cording and momentary time sampling, each with different dura-
tions, to identify which approximations yielded results closest to
the continuous duration recording they viewed as the best method.
Rogosa and Ghandour (1991) outlined statistical models for em-
pirical rates of behavior, empirical proportions or relative frequen-
cies of a type of behavior, empirical prevalence (proportion of time
the behavior occurs), and empirical event duration. They compared
these to continuous sampling, and also discussed sources of unre-
liability such as finite observation time, recorder errors, and insta-
bility of observations over occasions. So, in summary, a good deal
of work must to be done to know what SCD researchers are
actually doing with outcome measurement in order to provide the
best statistical advice about how the resulting data should be
analyzed.

Exploratory Analyses

In the examples in the present article, we have not reported
many exploratory analyses for two reasons. First, given how little
we know about the power of statistical tests in multilevel models
of SCDs, it is difficult to have much confidence in the extent to
which exploratory or confirmatory results suffer from Type I and
Type II errors. Second, especially for studies where power turns
out to be low, initially nonsignificant results may encourage the
researcher to do exploratory analyses to find significant ones by,
for example, testing reduced models in which nonsignificant terms
in the main model are dropped to improve overall model fit or
searching through a set of predictors to find those that are signif-
icant. Just as in all research, the issue is not that exploratory
analyses are wrong. Rather, it is that the researcher is obligated to
clearly report and distinguish between the primary and exploratory
analyses and that interpretation of such exploratory analysis must
be quite cautious. Third, just as is often the case in other literatures
(e.g., Francis, 2012; Ioannidis, 2005, 2008; Ioannidis & Lau, 2001;
Ioannidis & Panagiotou, 2011; Ioannidis & Trikalinos, 2007; Ky-
zas, Loizou, & Ioannidis, 2005; Renkewitz, Fuchs, & Fiedler,
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2011; Simmons, Nelson, & Simonsohn, 2011; Wagenmakers,
Wetzels, Borsboom, & van der Maas, 2011), certain biases in the
conduct of science, such as confirmation biases and excitement
about new treatments that might really be Type I errors, can too
easily result from those exploratory analyses. The issue is com-
plex, as the following examples will show.

Consider the exploratory analysis in the Resetar and Noell
(2008) example in which we examined whether the treatment was
more effective for two of the cases than for the remaining cases.
Resetar and Noell used visual analysis to conclude that this was the
case. The statistical analysis did not support that conclusion, with
the results of treatment not being significantly different for the two
sets of cases. Both are exploratory analyses, of course, but one can
see the interpretational dilemma. Given how little we know about
power in these analyses, is the nonsignificant statistical finding
merely a result of low power? Did Resetar and Noell (2008)
engage in the visual equivalent of fishing for results, given that the
treatment in that study did not seem to have an overall effect?

Consider also the second exploratory analysis in this article, the
reduced model analysis of the Lambert et al. (2006) data. The
motivation for that analysis was to simplify the interpretation of a
very complex set of two- and three-factor interactions (where
power was obviously not an issue, as they were significant). It was
not to fish for significant results; nor was it to eliminate nonsig-
nificant results from the model in a backwards stepwise fashion.
Further, the results of the reduced model were consistent with
the full model in general tenor, though the full model implied that
the effects of treatment depended on session and on whether the
observation occurred in the first or second AB phase. For parsi-
mony, some researchers will prefer the reduced model, but a good
argument can be made that the full model more accurately reflects
the complexity that visual analysis suggests may be present in that
data set. Is this kind of exploratory analysis a good thing?

Finally, common practice in multilevel modeling is to start with
an unconditional model and then add predictors at each level to
account for the variability implied when some variance compo-
nents are significant. This may be less well conceptualized as
exploratory analysis than it is as using the unconditional model to
establish a baseline regarding whether such variability even exists.
Those predictors, however, should be planned where possible and
acknowledged as exploratory otherwise. Is this to be encouraged or
not?

Baer (1977) argued that SCD researchers prefer “very low
probabilities of Type 1 errors, and correspondingly high probabil-
ities of Type 2 errors” (p. 167); that is, they are willing to overlook
potentially effective treatments with small effects because they are
interested in detecting powerful treatment effects. Such SCD re-
searchers may also believe that statistical analyses detect weak
treatment effects that are not practically important. Two issues
arise. One is that SCD researchers could use this as an argument
for more extensive use of exploratory analyses in SCDs. Even if
that were the case, however, one might distinguish between anal-
yses that do or do not make an obvious (even if exploratory)
contribution to theory or behavior technology development. For
example, the example from Resetar and Noell (2008) does not
seem to make any such contribution, but it might have done so if
it had been tied to some characteristics of the cases of theoretical
interest, such as age or a pertinent ability.

The other issue is whether it is factually true that statistical
analyses detect weak treatment effects that are not practically
important. To judge from the six examples in this paper, the
statistical analyses tended to agree with the authors’ conclusions
most of the time, even though the analyses presented a more
nuanced view of the results. In the two cases where the results
disagreed, what happened is the opposite of Baer’s (1977) claim.
The statistical analysis found no significant effect when the au-
thors concluded otherwise. Submitting a much larger sample of
SCD studies to statistical analyses might provide better evidence
about Baer’s concerns. That being said, having this discussion is
difficult until formal power analyses for SCD analyses are avail-
able so that we can tell which analyses are likely to produce Type
I and II errors under which circumstance.

Other Single-Case Research Designs

This paper shows how to apply multilevel models to the four
most common designs used in SCD research—phase change de-
signs, multiple baseline designs, alternating treatment designs, and
changing criterion designs—which together accounted for 74% of
the designs found in Shadish and Sullivan’s (2011) survey of the
SCD literature. The remainder were designs that combined two or
more of these basic four. An example would be a study that started
with a simple baseline phase but then moved to an alternating
treatment design at the phase change, thus combining phase
change and alternating treatment designs. The only example of
such more complex designs in the previous examples is the Resetar
and Noell (2008) study, which used an alternating treatment design
with three rather than the usual two conditions. In general, it is
possible to analyze all of these with multilevel models, but the
details of each analysis will depend on the idiosyncrasies of the
exact design used in each study. Finally, some SCDs use some
form of random assignment of conditions to time (Kratochwill &
Levin, 2010). Most of these designs will fall into one of the four
basic design types, so the analyses will not be novel, even though
the benefits of randomization for the logic of causal inference may
be substantial.

Other Multilevel Modeling Statistical Programs

Multilevel modeling of SCD research has been done with HLM
in the present article and with SAS PROC MIXED by Van den
Noortgate and Onghena (2003a, 2003b, 2008). Examples of other
programs that can do the same thing include but are not limited to
the SPSS Mixed command (Peugh & Enders, 2005), the Stata
.xtmixed command (Rabe-Hesketh & Skrondal, 2005), and the R
lme4 and nlme packages, as well as specialty programs such as
Latent GOLD, Mplus, MLwiN, SuperMix, and WinBUGS. Each
of these programs will undoubtedly prove to have its own advan-
tages and disadvantages, but no one has yet cataloged them. For
example, one disadvantage of HLM is the previously mentioned
difficulty in using autoregressive models. Another is that HLM
uses the between/within method of computing degrees of freedom
based on counts of the variables and observations, whereas SAS
PROC MIXED offers a wider array of options (Satterthwaite,
containment, Kenward/Roger, between/within, residual). Simula-
tions by Ferron et al. (2009) suggest that Satterthwaite and Ken-
ward/Roger are more accurate than the other methods, although
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their simulation did not include time as a variable in the regression,
instead assuming no trend and no treatment by trend interaction.
However, none of these methods are perfect with unequal number
of observations per subject. It would be useful to investigate a
Bayesian approach using Markov chain Monte Carlo, which might
give more accurate results in spite of small samples and unequal
sample sizes per respondent. SAS PROC MIXED uses a default
option of a t test to test whether variance components are nonzero,
but it includes an option to use a more appropriate chi-square test
that is the default in HLM. Compared to Stata, HLM allows more
covariance structures to be modeled, and it allows estimation with
penalized quasi-likelihood generalized linear models or higher
order Laplace for some generalized linear models.

Another issue concerns the appropriateness of the Poisson dis-
tribution that we used to model count data. In theory, other
distributions might be more appropriate for this kind of data. For
example, for cases where overdispersion is present, a negative
binomial model allows for correction of overdispersion. A gener-
alized negative binomial model allows the dispersion to vary
observation by observation. A generalized event count model
allows for modeling both over- and underdispersion. Zero-inflated
models can be appropriate when the data contain an excessive
number of zeros, which is not an uncommon experience in SCD
research. HLM does not allow any of these options at present.
Mplus allows fitting a negative binomial model. No program we
know of, however, allows estimation of a multilevel zero inflated
negative binomial model. So, in view of all these examples, a
thorough review of the strengths and weaknesses of the various
multilevel modeling programs for use in SCD research would be
highly valuable.

Multilevel Modeling and the What Works
Clearinghouse Standards

We noted earlier that the What Works Clearinghouse (WWC)
has developed preliminary standards for SCDs to meet evidence
standards about what treatments are effective (Kratochwill et al.,
2010). For example, in a multiple baseline design, the standards
call for having three cases (in order to provide three opportunities
to demonstrate the effect) and five time points in both baseline and
treatment. However, minimally meeting these criteria would result
in a set of SCDs that is smaller than any of the examples used in
this article. Because we know so little about the power of multi-
level models in SCDs, we cannot be sure that studies that meet the
WWC criteria could feasibly be analyzed with multilevel models.

Fortunately, most SCDs are on average larger than the minimum
WWC criteria require to meet evidence standards. Both Shadish
and Sullivan (2011) and Smith (2012), for example, found that the
average SCD had more cases and more time points than the
minimum required by the SCD. In addition, the WWC standards
explicitly state that no consensus exists about what is the best
analytic method for SCDs. Presumably, as more consensus on that
matter emerges, the WWC standards may be changed to encourage
sufficiently large SCD studies to allow proper data analysis—
though the SCD community is quite diverse, and not all SCD
researchers agree that statistical analysis is a desirable goal (Shad-
ish et al., in press). Last, we know very little about the power and
other characteristics of all the other analytic methods that have
been proposed for SCDs, so the same dilemma applies to them as

well. In all these respect and more, the question of data analysis for
SCDs is an extremely fertile one for interested researchers.
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