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Increasing interest in individualizing and adapting intervention services over time has led to the development of
adaptive interventions. Adaptive interventions operationalize the individualization of a sequence of intervention
options over time via the use of decision rules that input participant information and output intervention recom-
mendations. We introduce Q-learning, which is a generalization of regression analysis to settings in which a
sequence of decisions regarding intervention options or services is made. The use of Q is to indicate that this method
is used to assess the relative quality of the intervention options. In particular, we use Q-learning with linear
regression to estimate the optimal (i.e., most effective) sequence of decision rules. We illustrate how Q-learning can
be used with data from sequential multiple assignment randomized trials (SMARTs; Murphy, 2005) to inform the
construction of a more deeply tailored sequence of decision rules than those embedded in the SMART design. We
also discuss the advantages of Q-learning compared to other data analysis approaches. Finally, we use the Adaptive
Interventions for Children With ADHD SMART study (Center for Children and Families, University at Buffalo,
State University of New York, William E. Pelham as principal investigator) for illustration.
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The advantages of adaptive interventions are widely acknowl-
edged in the behavioral and social sciences. In adaptive interven-
tions, the composition and the intensity of the intervention are
individualized based on individuals’ characteristics or clinical pre-
sentation, and then adjusted in response to their ongoing perfor-
mance (see, e.g., Bierman, Nix, Maples, & Murphy, 2006; Con-
nell, Dishion, Yasui, & Kavanagh, 2007; Marlowe et al., 2008;
Schaughency & Ervin, 2006). The conceptual idea of an adaptive
intervention can be operationalized by using decision rules (Bierman
et al., 2006) that link subjects’ characteristics and ongoing perfor-
mance with specific subsequent intervention options (i.e., the type and
the intensity/dosage of the intervention). The assignment of particular

intervention options is based on participants’ values on tailoring
variables—baseline and time-varying variables that strongly moder-
ate the effect of certain intervention options, such that the type or
intensity of the intervention should be tailored according to these
moderators (see the companion article, Nahum-Shani et al., 2012, for
more details and examples of decision rules).

High-quality adaptive interventions are constructed by selecting
good decision rules, namely, decision rules that are expected to
optimize the overall effectiveness of the sequence of tailored
intervention options. In recent years, intervention scientists have
become increasingly interested in experimental designs and data
analysis methods that are specifically suited for selecting high-
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quality decision rules for intervention development (Brown et al.,
2009; Collins, Murphy, & Strecher, 2007; Rivera, Pew, & Collins,
2007). The sequential multiple assignment randomized trial
(SMART) was developed to provide data specifically for the
purpose of constructing adaptive interventions. In a SMART de-
sign, participants proceed through multiple intervention stages
(corresponding to critical decision points) and at each stage, each
individual is randomized among intervention options (see the
companion article, Nahum-Shani et al., 2012, for an overview of
SMART designs). Nahum-Shani et al. (2012) provided methods
that can be used to compare intervention options at different stages
of the adaptive intervention as well as to compare the relatively
simple adaptive interventions embedded in a SMART design.
However, investigators are often interested in constructing inter-
ventions that are more complex than those embedded in the
SMART design. For example, investigators often collect informa-
tion concerning potential moderators (e.g., baseline characteristics
of the individual and/or context, adherence to and/or side effects
from prior intervention stages) and plan to use this information to
investigate whether and how intervention options should be tai-
lored according to these variables. In other words, investigators are
interested in using additional information collected as part of the
SMART study to explore ways to more deeply tailor the adaptive
intervention. Accordingly, data analysis methods are needed in
order to construct the best sequence of decision rules that employ
additional potential useful tailoring variables at each intervention
stage.

Here, we introduce Q-learning (Watkins, 1989)—a novel but
straightforward methodology drawn from computer science that
can be used for the construction of high-quality adaptive interven-
tions from data. Our implementation of Q-learning will utilize a
series of linear regressions to construct the sequence of decision
rules (i.e., the sequence of adaptive intervention options) that
maximizes a continuous outcome. Q-learning is used to assess the
quality of the decision (i.e., the intervention option) at each critical
decision stage (i.e., intervention stage), while appropriately con-
trolling for effects of both past and subsequent adaptive decisions
(i.e., adaptive intervention options).

We first provide a general framework for Q-learning with linear
regression. Then, drawing on hypothetical examples from the area
of goal setting in organizational research (based on ideas from
Erez, 1990, and Fried & Slowik, 2004), we illustrate how
Q-learning can be employed to analyze data from four common
types of SMART studies. We also compare Q-learning with other
data analysis approaches that might be used in constructing adap-
tive interventions. Finally, we illustrate Q-learning using data from
a SMART study aiming to develop an adaptive intervention for
improving the school-based performance of children with atten-
tion-deficit/hyperactivity disorder (ADHD; Center for Children
and Families, University at Buffalo, State University of New York,
William E. Pelham as principal investigator).

Motivation for Q-Learning

One way to develop a high-quality adaptive intervention is to
use data to construct an optimal sequence of decision rules,
namely, an optimal sequence of adaptive or individualized inter-
vention options. For example, assume an investigator is interested
in finding the best way to set goal difficulty on a complex task in

order to maximize employee performance. The investigator con-
ducts a SMART study (see the companion article, Nahum-Shani et
al., 2012, for more details concerning SMART designs) on N em-
ployee participants involving two critical goal-setting stages (i.e.,
intervention stages); at each stage, there are two goal-setting options
(i.e., two intervention options). At the first stage of the goal-setting
process (e.g., the beginning of the year), employees were randomized
with probability .5 to one of two goal-setting options. Let A1 denote
the randomized goal-setting options (i.e., the first-stage intervention
options) at the first stage, coded �1 for a moderate goal (i.e., a goal
with a moderate level of difficulty) and 1 for a difficult goal. At the
second stage of the goal-setting process (e.g., the middle of the year),
employees were rerandomized with probability .5 to one of two
goal-setting options. Let A2 denote the randomized goal-setting op-
tions at the second stage of the goal-setting process, coded �1 for a
moderate goal and 1 for a difficult goal. Let Y denote the
supervisor’s annual assessment of the employee’s performance
at the end of the second stage, coded so that high values are
preferred.

Assume the investigator considers the baseline self-efficacy of
the employee (i.e., the employee’s judgment of his/her capability
to accomplish a certain level of performance; Bandura, 1986) as a
candidate tailoring variable for the first-stage goal. Denote the
employee’s baseline self-efficacy by O1. Assume the investigator
also considers the attainment of the first-stage goal (i.e., whether or
not the employee achieved the first-stage goal) as a candidate
tailoring variable for the second-stage goal-setting options. Denote
the attainment of the first-stage goal by O2. Accordingly, the data
record for each of the N employees is O1, A1, O2, A2, Y.1

In general, Ot contains predictors of the primary outcome. O1

can be a vector of baseline measures (e.g., baseline performance,
personality and demographic characteristics), and O2 can be a
vector of intermediate outcomes measured prior to the second
stage of the intervention (e.g., self-efficacy, affect, and goal com-
mitment prior to the second stage of the goal-setting process). O1

and O2 might condition (moderate) the effects of the intervention
options; additionally, O2 might be affected by A1 and O1 (e.g., the
attainment of the first-stage goal might depend on whether the
first-stage goal was moderate or difficult, as well as on the em-
ployee’s baseline level of self-efficacy).

Now consider using the data on the N employees to construct a
sequence of decision rules, that is, a sequence of goal-setting
options that adapt to the employee’s baseline self-efficacy, as well
as to the attainment of the first-stage goal. A decision rule at the
first stage is denoted by d1, where the available information
(employee’s baseline self-efficacy, denoted by O1) is the input,
and the goal-setting option at the first-stage (a1) is the output. A
decision rule at the second stage is denoted by d2. In this decision
rule, the input is the available information on the employee’s
baseline self-efficacy, the first-stage goal-setting option, and the
attainment of the first-stage goal (O1, a1, O2), and the output is the
second-stage goal-setting option (a2).

Suppose we are interested in using the data described above to
construct an optimal adaptive intervention. Here, the word optimal

1 Throughout, we use uppercase letters to represent a random variable,
and lowercase letters to represent a particular value, or realization, of that
random variable.

479Q-LEARNING



means that if these decision rules were used to assign goals to the
entire study population, then this would lead to the maximal
expected annual assessment of the employee’s performance. De-
note the optimal adaptive intervention by the sequence of decision
rules �d*1, d*2�. Q-learning is a method for using data to construct
the decision rules �d*1, d*2� that operationalize the optimal adaptive
intervention. Q-learning uses backwards induction (Bellman &
Dreyfus, 1962) to construct a sequence of decision rules that map
or link the observations (here captured by the tailoring variables)
to the actions the agent (decision maker) ought to take in order to
maximize a primary outcome. In terms of constructing an adaptive
intervention, Q-learning can be used to find the sequence of
decision rules that link the observed information concerning an
individual (e.g., characteristics and responses to past intervention
options) to the most efficient intervention type and intensity/
dosage. Q-learning allows us to contrast the intervention options at
each stage, controlling for effects of both past and subsequent
adaptive intervention options. This enables investigators to con-
trast intervention options when used as part of a sequence, as
opposed to contrasting intervention options as stand-alone options
for each stage (see the companion article, Nahum-Shani et al.,
2012, for more details). In the following section, we show how
Q-learning can be used to construct an optimal sequence of deci-
sion rules.

Q-Learning

To illustrate the intuition behind Q-learning, it is useful to first
consider the case in which an expert2 provides the multivariate
distribution of O1, O2, and Y for every sequence of decisions a1,
a2. In this case, we construct the optimal sequence of decision
rules using backwards induction as follows. We begin by finding
the optimal decision rule at the second stage, namely,
d*2 �O1, a1, O2�.

d*2�O1, a1, O2� � arg max
a2

Q2 �O1, a1, O2, a2�,

where Q2 (O1, a1, O2, a2) � E[Y�O1, a1, O2, a2]. Accordingly, the
optimal second-stage decision rule d*2 �O1, a1, O2� is the second-
stage intervention option a2 for which Q2 (O1, a1, O2, a2) (i.e., the
expected primary outcome, conditional on information available
up to the second stage) attains its maximal value. The use of Q to
denote the conditional expectation is a mnemonic to indicate that
this expectation is used to assess the quality of the intervention
option. Q2 is the conditional expectation that provides the quality
of choosing second-stage option a2, given the information avail-
able (O1, a1, O2).

Then, we move backwards in time to construct the optimal
decision rule at the first stage, namely, d*1 �O1�.

d*1 �O1� � arg max
a1

Q1 �O1, a1�,

where Q1 �O1, a1� � E�maxa2Q2 �O1, a1, O2, a2��O1, a1� is the
conditional expectation that provides the quality of choosing first-
stage intervention option a1, controlling for the use of the best
second-stage intervention option and given the information available
(O1). Accordingly, the optimal first-stage decision rule d*1 �O1� equals
the first-stage option a1 for which Q1 (O1, a1) attains its maximal
value (i.e., the first-stage intervention option that, given the informa-

tion available up to the first stage, leads to the maximal expected
mean outcome obtained by choosing the optimal second-stage inter-
vention option). Q1 and Q2 are often called Q-functions (Sutton &
Barto, 1998). Note that the optimal sequence of decision rules �d*1, d*2�
output the first-stage and second-stage intervention options that max-
imize Q1, Q2, respectively.

Here, we focus on using SMART study data to construct the
optimal sequence of decision rules because we do not know the
true multivariate distribution of O1, O2, and Y. We represent
the study data by {O1i, A1i, O2i, A2i, Yi}, i � 1, . . . , N, where N
is the number of study participants. Throughout, for simplicity, we
assume that participants are randomly assigned to one of two
intervention options at each of the two intervention stages (e.g., A1

and A2 are randomized).
We estimate the Q-functions, from which we construct the

optimal sequence of decision rules as described above, using
Q-learning. In general, Q-learning involves any one of a variety of
regression techniques (linear regression, nonparametric regression,
additive regression) and can be used with a variety of outcomes
including longitudinal and/or binary, ordinal, and continuous out-
comes. For clarity, we present Q-learning with linear regression
and a continuous outcome Y. In this case, the second-stage
Q-function might be modeled as

Q2�O1, A1, O2, A2; �2, �2� � �20 � �21O1 � �22A1 � �23O1A1

� �24O2 � ��21 � �22A1 � �23O2�A2, (1)

where, �2 � (�20, �21, �22, �23, �24), and �2 � (�21, �22, �23).
Notice that our main interest lies primarily in the parameters �2

because they contain information with respect to how the second-
stage intervention (A2) should vary as a function of the candidate
tailoring variables (here A1 and O2). Based on Equation 1, one can
see that the second-stage intervention option (a2) that maximizes
Q2 is the one that maximizes the term (�21 	 �22A1 	 �23O2)a2.
If (�21 	 �22A1 	 �23O2) 
 0, the term (�21 	 �22A1 	 �23O2)a2

attains its maximal value by a2 � 1; if (�21 	 �22A1 	 �23O2) �
0, the term (�21 	 �22A1 	 �23O2)a2 attains its maximal value by
a2 � �1. We estimate the vector parameters �2 and �2 by the
following regression:

Y � �20 � �21O1 � �22A1 � �23O1A1 � �24O2

� ��21 � �22A1 � �23O2� A2.

Next, we estimate the quality of the optimal second-stage op-
tion. This is

Ỹi � max
a2

Q2�O1i, A1i, O2i, a2; �̂2, �̂2�, i � 1, . . ., n.

Here, Ỹi reduces to

Ỹi � �̂20 � �̂21O1i � �̂22A1i � �̂23O1iA1i � �̂24O2i

2 Expert systems (or knowledge-based systems) are defined broadly as
computer programs that mimic the reasoning and problem solving of a
human expert. These systems use prespecified knowledge about the par-
ticular problem area. They are based on theoretical models, employing
deep knowledge systems as a basis for their operation (Velicer, Prochaska,
& Redding, 2006).
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� � �̂21 � �̂22A1i � �̂23O2i � . (2)

Ỹi is the expected mean outcome obtained by choosing the optimal
second-stage intervention option, given the information available
(O1, a1, O2).

We use a linear regression for the first stage Q-function as well:

Q1�O1, A1; �1, �1� � �10 � �11O1 � ��11 � �12O1�A1, (3)

where, �1 � (�10, �11), and �1 � (�11, �12). Based on Equation
3, the first-stage option (a1) that maximizes Q1 is the value of a1

that maximizes the term (�11 	 �12O1)a1; that is, if (�11 	
�12O1) 
 0, a1 � 1 maximizes the term (�11 	 �12O1)a1, and if
(�11 	 �12O1) � 0, a1 � �1 maximizes the term (�11 	
�12O1)a1. We again use regression to estimate �1 and �1 as
follows:

Ỹ � �10 � �11O1 � ��11 � �12O1�A1.

Notice that this time we regress the estimated quality of the
optimal second-stage option (i.e., the maximal expected primary
outcome obtained by taking the best second-stage intervention
options) on A1, O1, and A1O1.

In summary, the estimated optimal sequence of decision rules
(i.e., the best adaptive first-stage and second-stage intervention
options) is

d̂*2�O1, A1,O2� � arg maxa2 Q2�O1, A1, O2, a2, �̂2, �̂2� � sign��̂21

� �̂22A1 � �̂23O2�,

d̂*1�O1� � arg maxa1 Q1�O1, a1; �̂1, �̂1� � sign��̂11 � �̂12O1�,

where d̂*2 �O1, A1, O2� is the estimated best second-stage interven-
tion option (a2), that is, the second-stage intervention option that
maximizes the mean of the primary outcome, given (O1, A1, O2);
d̂*1�O1� is the estimated best first-stage intervention option (a1) that,
given (O1), maximizes the mean of the maximal expected primary
outcome (i.e., the maximal expected primary outcome obtained by
taking the best second-stage intervention option).

Under the assumption that the linear models for Q1 and Q2 are
correct and the observations from one individual to another are
independent, the estimators of the regression coefficients are con-
sistent (unbiased in large samples) for the true regression coeffi-
cients.3 Also as is the case with all generalized linear models (e.g.,
logistic regression, ordinal regression, etc.), a crucial assumption is
that the sample size is sufficiently large so that the distribution of
the estimators for the regression coefficients can be well approx-
imated by the normal distribution. Practically, the sample size
must be larger if Y and/or any of the variables in O2 have highly
noncontinuous, skewed, or heavy tailed distributions than if all of
these variables have continuous symmetric distributions.

Consider the construction of confidence intervals (CIs) and/or
hypothesis testing concerning the regression coefficients in Q2.
Note that the second-stage linear regression for Q2 is an ordinary
linear regression. Hence, in large samples, bootstrap can be used to
estimate standard errors, form CIs and conduct hypothesis tests.4

Inference for the estimators of the regression coefficients in Q1 is
less standard. To see this, consider Equation 2 and note that the
formula for Ỹ (i.e., the dependent variable for the first-stage regres-
sion) contains an absolute value function. Because the absolute value

function is nondifferentiable at the point 0, the distribution of the
estimators of the regression coefficients in Q1 cannot be consistently
approximated by standard methods such as the bootstrap. That is, in
these cases, standard large-sample bootstrap-based tests and CIs
might perform poorly (Chakraborty, Murphy, & Strecher, 2010;
Robins, 2004). To provide CIs for the first-stage regression coeffi-
cients, methods that address the problem of nondifferentiability are
required. The software (provided at http://methodology.psu.edu/ra/
adap-treat-strat) utilizes the soft-thresholding with percentile boot-
strap method in which Q-learning is applied to each bootstrap
sample with one small adjustment to the formula for Ỹ. More
specifically, the term � �̂21 � �̂22A1 � �̂23O22 � is replaced by

��̂21 � �̂22A1 � �̂23O22 � �1 �
�

��̂21 � �̂22A1 � �̂23O22 ��
	

, where �

is equal to 3�1, A1, O22�
T
̂2�1, A1, O22�/N and 
̂2/N is the estimated

covariance matrix of �̂2. This adjustment tests whether
(�̂21 � �̂22A1 � �̂23O22) is close to zero and, if so, shrinks
� �̂21 � �̂22A1 � �̂23O22 � to zero. Chakraborty et al. (2010) found

that bootstrap intervals using this small adjustment achieve the
desired confidence level across a wide variety of simulated set-
tings.

Using Q-Learning to Analyze Data From Four
Different Types of SMART Studies

In the companion article (Nahum-Shani et al., 2012), we de-
scribe four common SMART studies: (a) SMART designs that do
not use intermediate outcomes as part of the experimental design
(i.e., SMARTs with no embedded tailoring variables, as in Fig-
ure 2 of Nahum-Shani et al., 2012), (b) SMART designs in which
whether or not to rerandomize depends on an intermediate out-
come (as in Figure 1 of Nahum-Shani et al., 2012), (c) SMART
designs in which participants are rerandomized to different
second-stage intervention options depending on an intermediate
outcome (as in Figure 3 of Nahum-Shani et al., 2012), and (d)
SMART designs in which whether or not to rerandomize depends
on an intermediate outcome and prior treatment (as in Figure 4 of
Nahum-Shani et al., 2012). In the following, we illustrate the use
of Q-learning with respect to data from each of these four types of
SMART designs. In general, there are three main differences
between the four designs in terms of the use of Q-learning. First,
the regression models might differ. Second, the subsample of the
SMART data used for estimating Q2 might differ. Third, there
might be differences in the construction of the estimated quality of
the optimal second-stage intervention option Ỹ. To clarify this, we
use hypothetical examples from the area of goal setting in orga-
nizational research.

SMARTs with no embedded tailoring variables. In these
SMART designs, all participants are rerandomized regardless of
any observed information (e.g., intermediate outcomes such as
response or adherence, or the intervention options offered in prior

3 This is a standard assumption for consistency in generalized linear
models such as logistic regression, survival analysis, and ordinal regres-
sion.

4 In small samples, the t-test statistic can be used if the usual assump-
tions underpinning classical linear regression hold (normal residuals, ho-
mogeneous variance, etc.).
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stages). Accordingly, assume an investigator obtained data from
the goal-setting study described previously, in which at the first
stage (i.e., beginning of the year) and at the second stage (i.e.,
middle of the year) employees were randomly assigned (with .5
probability) to one of two goal-setting options (A1/A2 � �1 for a
moderate goal, A1/A2 � 1 for a difficult goal). Recall that in
addition the investigator obtained data on two candidate tailoring
variables: self-efficacy at baseline (O1) and goal attainment (O2).
Assume self-efficacy is a continuous measure that the investigator
has standardized (M � 0, SD � 1). Also assume goal attainment
was measured in terms of whether (coded as 1) or not (coded as 0)
the first-stage goal was achieved. The investigator is interested
in using these data to obtain the optimal (i.e., in terms of the
employee’s annual performance assessment) sequence of goal-
setting options while assessing (a) whether and how to tailor the
first-stage goal-setting options to the employee’s self-efficacy
at baseline and (b) whether and how to tailor the second-stage
goal-setting options to the first-stage goal-setting option as-
signed to the employee, and to the employee’s attainment of the
first-stage goal.

To apply Q-learning in this context, begin with the second stage
of the goal-setting process, considering the first-stage goal-setting
option (A1) as well as goal attainment (O2), as candidate tailoring
variables for the second-stage goal-setting options. Here the model
in Equation 1 can be used for Q2; regress the primary outcome Y
on the predictors to obtain the parameter estimates �̂2, �̂2. Based
on the estimated regression coefficients, estimate the term (�̂21 	
�̂22A1 	 �̂23O2) for every given level of A1 and O2. If (�21 	
�22A1 	 �23O2) 
 0, the decision rule recommends assigning a
difficult goal (A2 � 1) at the second stage; if (�21 	 �22A1 	
�23O22) � 0, the decision rule recommends assigning a moderate
goal (A2 � �1) at the second stage of the goal-setting process. For
example, if (�21 	 �22 	 �23) 
 0, the decision rule recommends
assigning a difficult goal at the second stage (A2 � 1) to employees
who achieved (O2 � 1) a difficult goal (A1 � 1) at the first stage
of the goal-setting process; if (�21 	 �22) � 0, the decision rule
recommends assigning a moderate goal at the second stage (A2 �
�1) to employees who failed to achieve (O2 � 0) a difficult goal
(A1 � 1) at the first stage of the goal-setting process.

Now move backwards in time to find the best first-stage
goal-setting option (A1) controlling for the best second-stage
goal-setting option (i.e., assuming all participants were as-
signed to the best second-stage goal-setting option, given their
first-stage goal-setting option and goal attainment). Use Equa-
tion 2 to estimate the quality, Ỹ, of the optimal second-stage
goal-setting option. Then, model Q1 by Equation 3 and regress
Ỹ on the predictors to obtain �̂1 and �̂1. Based on these
estimated regression coefficients, estimate the term (�̂11 	
�̂12O1) for every value of O1 that is of special interest (e.g., the
mean and mean �1 SD). If (�11 	 �12O1) 
 0, the decision rule
recommends assigning a difficult goal (A1 � 1) at the first stage
of the goal-setting process, and if (�11 	 �12O1) � 0, the
decision rule recommends assigning a moderate goal (A1 � �1)
at the first stage of the goal-setting process. For example, if
(�11 	 �12) 
 0, the decision rule recommends assigning a
difficult first-stage goal (A1 � 1) to employees who reported
relatively high levels of self-efficacy at baseline (i.e., when
O1 � 1; that is, the level of self-efficacy is one standard
deviation above the sample mean); if (�11 � �12) � 0, the

decision rule recommends assigning a moderate first-stage goal
(A1 � �1) to employees who reported relatively low levels of
self-efficacy at baseline (i.e., when O1 � �1; that is, the level
of self-efficacy is one standard deviation below the sample
mean).

SMARTs in which whether to rerandomize or not depends
on an intermediate outcome. In these SMART designs, an
observed intermediate outcome (usually response or adherence to
prior intervention option) is used to determine whether or not a
participant should be rerandomized. Accordingly, consider data
obtained from a two-stage goal-setting SMART study in which at
the first stage (e.g., the beginning of the year) employees were
randomized (with .5 probability) to one of two goal-setting op-
tions: to receive a moderate goal (A1� �1), or to receive a difficult
goal (A1 � 1). At the second stage (e.g., the middle of the year),
only employees who did not achieve the first-stage goal were
rerandomized (with .5 probability) to one of two goal-setting
options: to reduce the difficulty of the first-stage goal (A2� �1),
or to maintain the level of difficulty of the first-stage goal (A2 �
1). Employees who achieved the first-stage goal were not reran-
domized and received another goal, similar in its level of difficulty
to the first-stage goal. Notice that in this SMART design, goal
attainment is a tailoring variable that is embedded in the design. It
is used to determine whether the employee should be rerandom-
ized at the second stage of the goal-setting process.

Assume that the investigator also obtained data on two candi-
date tailoring variables (that are not embedded in the design): the
employee’s self-efficacy at baseline (O1) and the employee’s com-
mitment to the first-stage goal, namely, the employee’s unwilling-
ness to abandon or change the initial goal (Donovan & Radosev-
ich, 1998; O2). Assume both measures are continuous. The
investigator is interested in using these data to estimate the optimal
(i.e., in terms of the employee’s annual performance evaluation)
sequence of goal-setting options that adapt to the employee’s goal
attainment, while assessing (a) whether and how the first-stage
goal-setting options should be tailored to the employee’s level of
self-efficacy at baseline and (b) for employees who failed to
achieve the first-stage goal, whether and how to tailor the second-
stage goal-setting options to the first-stage goal-setting option
assigned to the employee and to the employee’s commitment to the
first-stage goal.

To apply Q-learning in this context, begin with the second stage
of the goal-setting process, aiming to find the best second-stage
goal-setting option for employees who failed to achieve the first-
stage goal. Accordingly, use Equation 1 to model Q2 for employ-
ees who failed to achieve the first-stage goal and use only data
from employees who failed to achieve the first-stage goal in the
regression analysis for obtaining �̂2 and �̂2. Based on the estimated
regression coefficients obtain (�̂21 	 �̂22A1 	 �̂23O2) for every
given level of A1 and levels of O2 that are of special interest (e.g.,
the mean and mean � 1 SD). If (�21 	 �22A1 	 �23O2) 
 0, the
decision rule recommends maintaining the level of goal difficulty
(A2 � 1) for employees who failed to achieve the first-stage goal,
and if (�21 	 �22A1 	 �23O22) � 0, the decision rule recommends
reducing the level of difficulty (A2 � �1) for employees who
failed to achieve the first-stage goal.

Now, move backwards in time to find the best first-stage goal-
setting option (A1), controlling for the best second-stage goal-
setting option for employees who fail to achieve the first-stage
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goal. Accordingly, use Equation 2 to estimate Ỹ (i.e., the quality of
the optimal second-stage goal-setting option) for employees who
failed to achieve the first-stage goal, and set Ỹ � Y for employees
who achieved the first-stage goal (these employees were not re-
randomized). Then, use Equation 3 to model Q1 and regress Ỹ on
the predictors to obtain �̂1 and �̂1. Based on these estimated
regression coefficients, estimate the term ��̂11 � �̂12O1� for every
value of O1 that is of special interest (e.g., the mean and mean
�1 SD). If (�11 	 �12O1) 
 0, the decision rule recommends
assigning a difficult goal (A1 � 1) at the first stage of the goal-
setting process, and if (�11 	 �12O1) � 0, the decision rule
recommends assigning a moderate goal (A1 � �1) at the first stage
of the goal-setting process.

SMARTs in which rerandomization to different second-
stage intervention options depends on an intermediate out-
come. In these SMART designs, an observed intermediate out-
come is used to determine to which set of intervention options a
participant should be rerandomized. Accordingly, consider data
obtained from a two-stage goal-setting SMART study in which at
the first stage of the goal-setting process, employees were random-
ized (with .5 probability) to one of two goal-setting options: to
receive a moderate goal (A1�-1), or to receive a difficult goal
(A1 � 1). At the second stage of the goal-setting process, employ-
ees who achieved the first-stage goal were rerandomized (with .5
probability) to one of two second-stage goal-setting options: to
maintain the difficulty of the first-stage goal (A2� �1), or to
enhance the difficulty of the first-stage goal (A2 � 1). Employees
who failed to meet the first-stage goal were rerandomized (with .5
probability) to one of two goal-setting options: to reduce the
difficulty of the first-stage goal (A2� �1), or to maintain the
difficulty of the first-stage goal (A2 � 1). Notice that the two
second-stage goal-setting options (A2) are different depending on
whether or not the first-stage goal was achieved.

Assume that the investigator also obtained data on three candi-
date tailoring variables: the employee’s self-efficacy at baseline
(O1), the quality of the strategies the employee used (see Chesney
& Locke, 1991) to achieve the first-stage goal (O21), and the
employee’s commitment to the first-stage goal (O22). The inves-
tigator is interested in using these data to estimate the optimal (in
terms of the employee’s annual performance evaluation) sequence
of goal-setting options that adapt to an employee’s attainment of
the first-stage goal, while assessing (a) whether and how to tailor
the first-stage goal-setting options to the employee’s level of
self-efficacy at baseline; (b) for employees who achieved the
first-stage goal, whether and how to tailor the second-stage goal-
setting options to the first-stage goal-setting option and to the
quality of strategies the employee used to achieve the first-stage
goal; and (c) for employees who failed to achieve the first-stage
goal, whether and how to tailor the second-stage goal-setting
options to the first-stage goal-setting option, and to the employee’s
commitment to the first-stage goal. Notice that the candidate
tailoring variables considered for employees who achieved the
first-stage goal (A1, O21) are different from the candidate tailoring
variables considered for employees who failed to achieve the
first-stage goal (A1, O22).

To apply Q-learning in this context, begin with the second
stage of the goal-setting process, aiming to find the best second-
stage goal-setting option for employees who failed to achieve
the first-stage goal and the best second-stage goal-setting op-

tions for employees who achieved the first-stage goal. Accord-
ingly, model Q2 by

Q2�O1, A1, O21, O22, A2; �2, �2� � �20 � �21O1 � �22A1

� �23A1O1 � �24O21 � �25O22 � ��21R � �22�1 � R�

� �23A1R � �24A1�1 � R� � �25O21R

� �26O22�1 � R��A2,

where R indicates whether (R � 1) or not (R � 0) an employee
achieved the first-stage goal.5 That is, for employees who achieved
the first-stage goal (R � 1), Q2 is modeled by

Q2�O1, A1, O21, O22, A2; �2, �2� � �20 � �21O1 � �22A1

� �23A1O1 � �24O21 � �25O22 � ��21 � �23A1 � �25O21�A2,

and for employees who failed to achieve the first-stage goal (R � 0),
Q2 is modeled by

Q2�O1, A1, O21, O22, A2; �2, �2� � �20 � �21O1 � �22A1

� �23A1O1 � �24O21 � �25O22 � ��22 � �24A1 � �26O22�A2.

Accordingly, regress the primary outcome Y on the predictors to
obtain �̂2 and �̂2. Then, use these estimated regression coefficients
to obtain (�̂21 	 �̂23A1 	 �̂25O21) and (�̂22 	 �̂24A1 	 �̂26O22)
for every given level of A1 and every value of O21 and O22 of
special interest (e.g., the mean and mean � 1 SD). For employees
who achieved the first-stage goal, the decision rule recommends
enhancing the difficulty (A2 � 1) of the goal if (�21 	 �23A1 	
�25O21) 
 0 and to maintain the level of goal difficulty (A2 � �1)
if (�21 	 �23A1 	 �25O21) � 0. For employees who failed to
achieve the first-stage goal, the decision rule recommends main-
taining the level of goal difficulty (A2 � 1) if (�22 	 �24A1 	
�26O22) 
 0 and reducing the level of goal difficulty (A2 � �1)
if (�22 	 �24A1 	 �26O22) � 0.

Now, move backwards in time to find the best first-stage goal-
setting option (A1), controlling for the best second-stage goal-
setting option for employees who achieve the first-stage goal and
for employee who fail to achieve the first-stage goal. Accordingly,
use Ỹ � �̂20 	 �̂21O1 	 �̂22A1 	 �̂23A1O1 	 �̂24O21 	 � �̂21 	
�̂23A1 	 �̂25O21 � to estimate the quality of the optimal second-
stage goal-setting option for employees who achieved the first-stage
goal, and Ỹ � �̂20 	 �̂21O1 	 �̂22A1 	 �̂23A1O1 	 �̂25O22 	 ��̂22

	 �̂24A1 	 �̂26O22 � to estimate the quality of the optimal second-
stage goal-setting option for employees who failed to achieve the
first-stage goal. Then, use Equation 3 to model Q1 and regress Ỹ on
the predictors to obtain �̂1 and �̂1. Based on these estimated
regression coefficients, estimate the term (�̂11 	 �̂12O1) for every
value of O1 that is of special interest (e.g., the mean and mean �
1 SD). If (�11 	 �12O1) 
 0, the decision rule recommends
assigning a difficult goal (A1 � 1) at the first stage of the goal-
setting process, and if (�11 	 �12O1) � 0, the decision rule

5 The indicator for response/nonresponse is part of the vector of inter-
mediate outcomes measured prior to the second stage of the intervention
(O2); however, we use the notation R instead of the notation O23 for clarity.
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recommends assigning a moderate goal (A1 � �1) at the first stage
of the goal-setting process.

SMARTs in which whether to rerandomize or not depends
on an intermediate outcome and prior treatment. In these
SMART designs, an intermediate outcome and the prior interven-
tion option are used to determine whether or not a participant
should be rerandomized. Accordingly, consider data obtained from
a two-stage goal-setting SMART study in which, at the first stage
of the goal-setting process (i.e., beginning of the year), employees
were randomized (with .5 probability) to one of two goal-setting
options: to receive a moderate goal (A1 � �1), or to receive a
difficult goal (A1 � 1). At the second stage of the goal-setting
process (e.g., middle of the year), only employees who failed to
achieve a difficult goal at the first stage were rerandomized (with
.5 probability) to two options: to reduce the difficulty of the
first-stage goals (A2 � �1), or to maintain the difficulty of the
first-stage goal (A2 � 1). Employees who achieved a diffi-
cult first-stage goal or employees who received a moderate first-
stage goal were not rerandomized. More specifically, employees
who achieved a difficult first-stage goal received another difficult
goal. Employees who received a moderate first-stage goal received
another moderate goal if they failed to achieve the first-stage goal,
or a difficult goal if they achieved the first-stage goal.

Assume that, in addition, the investigator obtained information
on two candidate tailoring variables: the employee’s self-efficacy
at baseline (O1) and the employee’s commitment to the first-stage
goal (O2). Assume the investigator is interested in using these data
to estimate the optimal (i.e., in terms of the employee’s annual
performance evaluation) sequence of goal-setting options that
adapt to an employee’s attainment of the first-stage goal, while
assessing (a) whether and how to tailor the first-stage goal-setting
options to the employee’s level of self-efficacy at baseline, and (b)
for employees who failed to achieve a difficult first-stage goal,
whether and how to tailor the second-stage goal-setting options to
the employee’s goal commitment.

To apply Q-learning in this context, begin with the second stage
of the goal-setting process, aiming to find the best second-stage
goal-setting option for employees who failed to achieve a difficult
first-stage goal. Accordingly, model Q2 for employees who failed
to achieve a difficult first-stage goal by

Q2�O1, O2, A2; �2, �2� � �20 � �21O1 � �22O2

� ��21 � �22O2�A2,

and use only data from employees who failed to achieve a difficult
first-stage goal in the regression analysis for obtaining �̂2 and �̂2.
Then, use these estimated regression coefficients to obtain (�̂21 	
�̂22O2) for every value of O2 that is of special interest (e.g., the
mean and mean � 1 SD). The decision rule recommends main-
taining the same goal (A2 � 1) for employees who failed to
achieve a difficult first-stage goal if (�21 	 �22O2) 
 0 and to
reduce the difficulty of the first-stage goal (A2 � �1) if (�21 	
�22O2) � 0.

Now, move backwards in time to find the best first-stage goal-
setting option (A1), controlling for the best second-stage goal-setting
option for employees who fail to achieve a difficult first-stage goal.
Accordingly, use Ỹ � �̂20 	 �̂21O1 	 �̂22O2 	 ��̂21 	 �̂22O2 � to
estimate the quality of the optimal second-stage goal-setting option
for employees who failed to achieve a difficult first-stage goal. Set

Ỹ � Y for employees who were not rerandomized (i.e., those
who achieved a difficult first-stage goal or received a moderate
goal at the first stage). Then, use Equation 3 to model Q1 and
regress Ỹ on the predictors to obtain �̂1 and �̂1. Based on these
estimated regression coefficients, estimate the term (�̂11 	 �̂12O1)
for every value of O1 that is of special interest (e.g., the mean and
mean � 1 SD). If (�̂11 	 �̂12O1) 
 0, the decision rule recom-
mends assigning a difficult goal (A1 � 1) at the first stage of the
goal-setting process, and if (�̂11 	 �̂12O1) � 0, the decision rule
recommends assigning a moderate goal (A1 � �1) at the first stage
of the goal-setting process.

Alternatives to Q-Learning

A natural alternative to Q-learning is a single-regression ap-
proach. More specifically, one might want to construct (d*1, d*2)
using a single regression that includes the first-stage options, the
second-stage options, and the candidate tailoring variables. Con-
sider, for example, the goal-setting SMART study with no embed-
ded tailoring variables described above. The single regression
equation might be

Y � �0 � �1O1 � �2A1 � �3O1A1 � �4O2 � �5A2 � �6A1A2

� �7A2O2. (4)

However, using estimates based on this equation to construct the
optimal sequence of decision rules (d*1, d*2) is problematic in two
main aspects. First, because O2 (e.g., goal attainment) might be an
outcome of A1 and a potential predictor of Y, O2 cuts off any
portion of the effect of A1 on Y that occurs via O2. To clarify this,
O2 can be conceptualized as a mediator in the relationship between
A1 and Y (e.g., the effect of the first-stage goal-setting options on
annual performance assessment can be transmitted through the
attainment of the first-stage goal). Adding O2 to a regression in
which A1 is used to predict Y will reduce the effect of A1. In the
presence of O2, the coefficient for A1 no longer expresses the total
effect of the first-stage goal-setting options on the outcome, but
rather what is left of the total effect (the direct effect) after cutting
off the part of the effect that is mediated by A1 (the indirect effect;
Baron & Kenny, 1986; MacKinnon, Warsi, & Dwyer, 1995). Note
that ascertaining the total effect of the intervention options (e.g.,
the goal-setting options) at a given stage (say, A1) is crucial to
finding the best decision rule (e.g., d*1) because it provides infor-
mation concerning the overall effect of these intervention options.
Although the direct effect of the intervention options at a given
stage might be helpful in identifying mechanisms or processes
through which these intervention options might affect the outcome,
it is not as helpful in deciding which intervention option is supe-
rior. Accordingly, any inference concerning the optimal interven-
tion option at the first stage based on Equation 4 is likely to be
misleading.

Second, even if O2 is not a mediator, the coefficients of the A1

terms (main effects and interactions) in Equation 4 can be im-
pacted by unknown causes of both O2 and Y so that A1 might
appear to be falsely less or more correlated with Y. This bias occurs
when A1 affects O2 while O2 and Y are affected by the same
unknown causes (see Figure 1).

In order to demonstrate the way in which Q-learning reduces the
bias resulting from unmeasured causes, consider again the goal-
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setting SMART trial with no embedded tailoring variables de-
scribed above. For simplicity, assume there are no baseline vari-
ables O1. Also assume U � N(0, 1) is an unmeasured cause (say,
a personality characteristic) that has an effect on the annual per-
formance assessment (Y) and the attainment of the first-stage goal
(O2). More specifically, suppose Y � 1 	 0.5U 	 εY and O2 �
1 	 0.5U 	 0.5A1 	 ε0. For both models the error terms (ε’s) are
independent and standard normally distributed. Notice that in this
example, O2 does not mediate the relationship between A1 and Y;
A1 affects O2, but neither A1 nor A2 affect Y. We generated 1,000
samples (N � 500 each) using the above example. On each data
set, we used the single-regression approach and Q-learning. The
single-regression model is

Y � �0 � �1A1 � �2O2 � �3A2 � �4A1A2. (5)

A natural approach to using Equation 56 to construct the optimal
sequence of decision rules is as follows: We construct the optimal
decision rule at the second stage by finding the value of A2 that
maximizes Equation 5 (i.e., that maximizes the term ��̂3 	
�̂4A1�A2). That is, d̂*2 (A1) � sign(�̂3 	 �̂4A1). Replacing A2 by
sign(�̂3 	 �̂4A1), the estimated maximal expected outcome is

�̂0 � �̂1A1 � �̂2O2 � � �̂3 � �̂4A1 � . (6)

Now, we rewrite the maximal expected outcome in Equation 6
as

�̂0 � �̂1A1 � �̂2O2 � � �̂3 � �̂4A1 � � �̂0 � �̂1A1 � �̂2O2

�
A1 � 1

2
� �̂3 � �̂4 � �

1 � A1

2
� �̂3 � �̂4 � � �̂0 � �̂2O2 �

1

2
� � �̂3

� �̂4 � � � �̂3 � �̂4 � � � � �̂1 �
1

2
� � �̂3 � �̂4 � � � �̂3 � �̂4 � ��A1.

Next, we find the value of A1 that maximizes the above. Accord-

ingly, if ��̂1 	
1

2
� � �̂3 	 �̂4 � � � �̂3 � �̂4 � �� � 0, we can conclude

that A1 � 1 (a difficult goal) is the best first-stage goal-setting
option, given that we are going to choose the best second-stage

goal-setting option. If ��̂1 	
1

2
� � �̂3 	 �̂4 � � � �̂3 � �̂4 � �� � 0, we

conclude that A1 � �1 (a moderate goal) is the best first-stage
goal-setting option, given that we are going to choose the best
second-stage goal-setting option.

On the other hand, consider Q-learning. In analogy to Equation
5, we use the models

Q2� A1, O2, A2; �2, �2� � �20 � �21A1 � �22O2 � �21A2

� �22A1A2

and

Q1� A1; �1, �1� � �10 � �11A1.

Applying the Q-learning algorithm, we obtain estimates of the
parameters ��̂j, �̂j�, j � 1, 2. We estimate the best second-stage
intervention options by choosing A2 � sign��̂21 	 �̂22A1�, and the
best first-stage intervention option by choosing A1 � sign��̂11�.
Using this approach, �̂11 is the estimated effect of the first-stage
goal-setting options, given that we are going to choose the best
second-stage goal-setting option.

In conclusion, we know that the sign of

��̂1 	
1

2
� � �̂3 	 �̂4 � � � �̂3 � �̂4 � �� determines which first-stage

goal-setting option is selected as best in the single-stage regression
approach, whereas the sign of �̂11 determines which first-stage
goal-setting option is selected as best in Q-learning. We compare
the distributions of these two quantities across the 1,000 generated
samples. Recall that in our example, the first-stage goal-setting
options have no effect (i.e., the effect of A1 equals zero); thus, both
distributions should be centered at zero. Figure 2 presents the

distribution of ��̂1 	
1

2
� � �̂3 � �̂4 � � � �̂3 � �̂4 � ��, and Figure 3

presents the distribution of �̂11. It is easy to see that the distribution
of the Q-learning-based estimate is centered around zero (SD �
.06), while the distribution of the single-regression-based estimate
has a mean of �.10 (SD � .06). Thus, if there are unobserved
causes of both O2 and Y, the single-regression approach in Equa-
tion 6 might lead to erroneous conclusions concerning the best
sequence of decision rules. In contrast, the Q-learning method
provides unbiased estimators of the parameters needed to construct
the optimal sequence of decision rules.

Data Example: Adaptive Interventions for Children
With ADHD

Attention-deficit/hyperactivity disorder (ADHD) is a chronic
disorder affecting 5%–10% of school-age children. It adversely
impacts functioning at home, at school, and in social settings
(Pliszka, 2007). The limited success of pharmacological and be-
havioral interventions in the treatment of childhood ADHD has led
to the now-common clinical practice of combining these two
modalities (see Pelham et al., 2000). While the literature clearly
supports the efficacy of this combined approach to treatment, little
is known about the optimal way to sequence pharmacological and
behavioral interventions (Pelham & Fabiano, 2008; Pelham &
Gnagy, 1999). Accordingly, a SMART study was conducted (Wil-
liam E. Pelham, principal investigator) with the general aim to find
the optimal sequence of intervention options to reduce ADHD
symptoms and improve school performance among children.

Design and Research Questions

Recall that the observable SMART study data for one partici-
pant is denoted by {O1, A1, O2, A2, Y}. In the first stage of the

6 We ensured that Equation 5 provides a correct description of the data
given the formula we used for Y and O2 above.

Figure 1. Illustration of unmeasured confounders affecting O2 and Y.
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ADHD SMART study (at the beginning of a school year), children
were randomly assigned (with probability .5) to a low dose of
medication (A1 coded as �1) or a low-intensity behavioral inter-
vention (A1 coded as 1). Beginning at the 8th week, each child’s
response to the first-stage intervention was evaluated monthly until

the end of that school year. Monthly ratings from the Impairment
Rating Scale (IRS; Fabiano et al., 2006; available from http://
wings.buffalo.edu/adhd) and an individualized list of target behav-
iors (ITB; e.g., Pelham, Evans, Gnagy, & Greenslade, 1992; Pel-
ham et al., 2002) were used to evaluate response. At each monthly

Figure 2. Distribution of estimated coefficient ��̂1 �
1

2
� � �̂3 � �̂4 � � � �̂3 � �̂4 � ��. Std Deviation �

standard deviation.

Figure 3. Distribution of estimated coefficient ��̂11�. Std Deviation � standard deviation.
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assessment, children whose average performance on the ITB was
less than 75% and who were rated by teachers as impaired on the
IRS in at least one domain were designated as inadequate respond-
ers to the first stage of the intervention. If the child was classified
as a responder, then he/she remained in the first stage of the
intervention and continued the assigned first-stage intervention
option. If the child was classified as an inadequate responder,
he/she entered the second stage of the intervention. These children
were rerandomized (with probability .5) to one of two second-
stage intervention options, either to augmenting the first-stage
intervention option with the other type of intervention (i.e., adding
behavioral intervention for those who started with medication, or
adding medication for those who started with behavioral interven-
tion; A2 coded as �1) or to increasing the dose/intensity of the
first-stage intervention option (A2 coded as 1). Note that there are
only two key decisions in this trial: the first-stage intervention
decision (A1), and then the second-stage intervention decision (A2)
for those not responding satisfactorily to the first stage of the
intervention. The structure of this study is illustrated in Figure 4.

By design, the only embedded tailoring variable in the ADHD
study is whether or not the child responded to the first stage of the
intervention. However, it is interesting to assess whether the data
can be used to construct a more deeply tailored adaptive interven-
tion. For example, the investigators might be interested in assess-
ing whether and how (a) the first stage of the intervention should
be tailored according to whether or not the child received medi-
cation prior to the first stage of the intervention, (b) the second
stage of the intervention should be tailored according to the child’s
level of adherence to the first stage of the intervention, and (c) the
second stage of the intervention should be tailored according to the
intervention option offered at the first stage. Q-learning can be
used to estimate the best sequence of decision rules while evalu-
ating these three candidate tailoring variables.

Sample

One hundred forty-nine children (75% boys) between the ages
of 5–12 (mean age � 8.6 years) participated in the study. Due to
dropout and missing data,7 the effective sample used in the current
analysis was 138. At the first stage of the intervention, 70 children

were randomized to low dose of medication, and 68 were random-
ized to low dose of behavioral intervention. By the end of the
school year, 81 children had met the criteria for nonresponse at one
of the monthly evaluations and had been rerandomized to one of
the two second-stage intervention options (40 nonresponding chil-
dren were assigned to increasing the dose of the first-stage inter-
vention, and 41 nonresponding children were assigned to augment-
ing the first-stage intervention with the other type of intervention).

Measures

Primary outcome (Y). The level of children’s classroom
performance based on the IRS after an 8-month period is our
primary outcome. This outcome ranges from 1 to 5, with higher
values reflecting better classroom performance.

Medication prior to first-stage intervention (O11). This
measure reflects whether the child did (coded as 1) or did not
(coded as 0) receive medication at school during the previous
school year (i.e., prior to the first stage of the intervention).

Baseline measures. (a) ADHD symptoms at the end of the
previous school year, reflecting the mean of teacher’s evaluation
on 14 ADHD symptoms (the Disruptive Behavior Disorders Rat-
ing Scale; Pelham et al., 1992), ranging from 0 to 3 and inverse
coded so that larger values reflect fewer symptoms (i.e., better
classroom performance; labeled O12); (b) oppositional defiant
disorder (ODD) diagnosis indicator, reflecting whether the child
was (coded as 1) or was not (coded as 0) diagnosed with ODD
before the first-stage intervention (labeled O13).

Month of nonresponse (O21). The month during the school
year at which the child showed inadequate response to the first
stage of the intervention, and hence entered the second stage of the
intervention. This measure is relevant only for those who showed
inadequate response during the school year (i.e., classified as
nonresponders to the first stage of the intervention).

Adherence to first-stage intervention (O22). This measure
reflects whether adherence to the first-stage intervention was

7 In a full analysis, one would want to use a modern missing data method
to avoid bias.

Figure 4. Sequential multiple assignment randomized trial for attention-deficit/hyperactivity disorder study.
R � randomization.
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high (coded as 1) or low (coded as 0). We constructed this
indicator based on two other measures that express (a) the
percentage of days the child received medication during the
school year calculated based on pill counts (for those assigned
to low-dose medication at the first stage of the intervention),
and (b) the percentage of days the child received the behavioral
intervention during the school year based on the teacher’s
report of behavioral interventions used in the classroom (for
those assigned to behavioral intervention at the first stage of the
intervention). The distributions of these two measures are pre-
sented in Figures 5 and 6. Based on these distributions, we
constructed O22, such that for those assigned to behavioral
intervention at the first stage of the intervention, low adherence
(O22 � 0) means receiving less than 75% days of behavioral
intervention, and for those assigned to medication at the first
stage of the intervention, low adherence (O22 � 0) reflects
receiving less than 100% days of medication.8

Data Analysis Procedure

Using the Q-learning approach, the optimal sequence of
decision rules can be estimated based on two regressions, one
for each intervention stage. We start from the second stage,
aiming to find the best second-stage intervention option for
nonresponding children, given the information we have up to
the second stage (O11, O12, O13, A1, O21, O22). Because children
were classified as nonresponders at different time points along
the school year, we included the month of nonresponse (O21) in
this regression. We also included the two baseline measures
(O12, O13) in the regression in order to reduce error variance.

We consider the first-stage intervention (A1) and the level of
adherence to the first-stage intervention (O22) as candidate
tailoring variables for the second stage of the intervention. Q2

for nonresponders is modeled by

Q2�O11, O12, O13, A1, O21, O22, A2; �2, �2� � �20 � �21O11

� �22O12 � �23O13 � �24A1 � �25A1O11 � �26O21 � �27O22

� ��21 � �22A1 � �23O22�A2. (7)

In general, this regression might include further baseline variables
or other potential tailoring variables such as negative/ineffective
parenting styles and medication side effects. We obtained �̂2, �̂2 by
using regression on the data from the children who did not respond
in the first stage. In this simple case, the decision rule recommends
augmenting the first-stage intervention option with the alternative
type of intervention (A2 � �1) for a child who does not respond
to the first stage of the intervention if (�21 	 �22A1 	 �23O22) � 0
and increasing the dose of the first-stage intervention option (A2 � 1)
if (�21 	 �22A1 	 �23O22) 
 0. We used the GLM procedure in
SAS to obtain estimated coefficients based on Equation 7. To
obtain ��̂21 � �̂22A1 � �̂23O22� for every combination of A1 and
O22, we used the Estimate statement in GLM (General Linear
Models; this statement enables the researcher to estimate linear
combinations of the regression parameters and their standard er-

8 Such relatively high adherence rates may result from obtaining adher-
ence data only for the first 8 weeks of the school year. Moreover, study
medication was to be taken only on school days, and was dispensed
monthly.

Figure 5. Distribution for percentage of days on behavioral intervention for those assigned to low-intensity
behavioral intervention at the first stage of the intervention. Std Deviation � standard deviation.
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rors). More specifically, for A1 � 1 and O22 � 0, we obtained
(�̂21 	 �̂22); for A1 � �1 and O22 � 0, we obtained (��̂21 	
�̂22); for A1 � 1 and O22 � 1, we obtained (�̂21 	 �̂22 	 �̂23); and
for A1 � �1 and O22 � 1, we obtained (��̂21 	 �̂22 	 �̂23). The
standard test statistic (t test) provided by the GLM procedure was
used to assess whether each of these estimates significantly differs
from zero. Additionally, because A2 can obtain �1/1 values, we
estimated the difference between the two second-stage interven-
tion options conditional on A1 and O22 (e.g., the estimated simple
effect of A2) by

��̂21 � �̂22A1 � �̂23O22� � (��̂21 � �̂22A1 � �̂23O22) � 2��̂21

� �̂22A1 � �̂23O22�.

Now we move backwards in time, aiming to find the best
first-stage intervention option (A1) controlling for the best second-
stage intervention option. Based on Equation 7, the estimated
quality of the optimal second-stage intervention option for nonre-
sponders is

Ỹ � �̂20 � �̂21O11 � �̂22O12 � �̂23O13 � �̂24A1 � �̂25A1O11

� �̂26O21 � �̂27O22 � � �̂21 � �̂22A1 � �̂23O22 � .

Because responders remain on their first-stage intervention option,
we set Ỹ � Y for responders.

Q1 is modeled by

Q1�O11, O12, O13, A1; �1, �1� � �10 � �11O11 � �12O12 � �13O13

� ��11 � �12O11�A1.

Again we used the SAS GLM procedure to regress Ỹ on the
predictors and obtain �̂1 and �̂1. We used the Estimate statement in
GLM to obtain ��̂11 	 �̂12O11� for every level of O11. If
(�11 	 �12O11) 
 0, the best first-stage intervention option would
be low-intensity behavioral intervention (A1 � 1). If (�11 	
�12O11) � 0, the best first-stage intervention option would be low
dose of medication (A1 � �1). Additionally, because A1 can
obtain �1/1 values, the estimated difference between the two
first-stage intervention options conditional on O11 (e.g., the esti-
mated simple effect of A1) is (�̂11 	 �̂12O11) � (��̂11 �
�̂12O11) � 2(�̂11 	 �̂12O11). We used the soft-thresholding
method (Chakraborty et al., 2010) to provide CIs for the first-stage
regression coefficients.

Results

Table 1 presents the results for the second-stage regression.
Based on these estimates, we estimated the formula
��̂21 	 �̂22A1 	 �̂23O22� for every given combination of A1 and O22

(see Table 2).
The results in Table 1 show that the effect of the second-stage

intervention options (A2) is negative and statistically significant (
�̂21 � �.72, lower limit 95% CI � �1.15, upper limit 95%
CI � �.29). Although the interaction between the first-
stage intervention options (A1) and the second-stage interven-
tion options (A2) is not statistically significant (�̂22 � 0.05, lower
limit 95% CI � �.22, upper limit 95% CI � .32), the interaction
between adherence to the first stage of the intervention (O22) and
the second-stage intervention options (A2) is statistically signifi-

Figure 6. Distribution for percentage of days on medication for those assigned to low dose of medication at
the first stage of the intervention. Std Deviation � standard deviation.
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cant (�̂23 � .97, lower limit 95% CI � .41, upper limit 95% CI �
1.53).

The results in Table 2 indicate that when adherence to the first
stage of the intervention is low (O22 � 0), the term (�̂21 	 �̂22A1)
is negative and statistically significant, regardless of whether the
first-stage intervention option was low dose of medication (�̂21 �
�̂22 � �.77, lower limit 95% CI � �1.30, upper limit 95% CI �
�0.32), or low-intensity behavioral intervention (�̂21 	 �̂22 � .67,
lower limit 95% CI � �1.14, upper limit 95% CI � �.19).
Accordingly, when adherence to the first stage of the intervention
is low, the term (�21 	 �22A1)A2 is maximized when A2 � �1
(augment the first-stage intervention option with the alternative
type of intervention). However, when adherence to the first stage
of the intervention is high (O22 � 1), the term (�̂21 	 �̂22A1 	 �̂23)
was not found to be significantly different from zero, regardless of
whether the first-stage intervention option was low dose of med-
ication (�̂21 � �̂22 	 �̂23 � .20, lower limit 95% CI � �.26, upper
limit 95% CI � .67) or low-intensity behavioral intervention
(�̂21 	 �̂22 	 �̂23 � .30, lower limit 95% CI � �.13, upper limit
95% CI � .74).

Overall, the results of the second-stage regression suggest that if
a child does not respond to the first stage of the intervention
(regardless of whether the first-stage intervention option was low
dose of medication or low-intensity behavioral intervention) and if
adherence to the first stage of the intervention is low, augmenting
the first-stage intervention option with the alternative type of
intervention (A2 � �1) leads to better classroom performance
relative to increasing the dose/intensity of the first-stage interven-
tion option (A2 � 1). However, if adherence to the first stage of the

intervention is high, there is inconclusive evidence with respect to
the difference between the two second-stage intervention options.
Figure 7 presents the predicted means for each of the second-stage
intervention options (A2), given the first-stage intervention options
(A1) and adherence to the first stage of the intervention (O22).

Table 3 presents the results for the first-stage regression. Based
on these estimates, we estimated the term ��̂11 	 �̂12O11� for each
value of O11 (see Table 4). The results in Table 4 indicate that the
effect of the first-stage intervention options (A1) is positive and
marginally significant (�̂11 � .17, lower limit 90% CI � �.01,
upper limit 90% CI � .34), and the interaction between the
first-stage intervention options (A1) and medication prior to the
first stage of the intervention (O11) is negative and marginally
significant (�̂12 � �.32, lower limit 90% CI � �.59, upper limit
90% CI � �.06).

Based on the estimates in Table 4, we estimated the formula
��̂11 � �̂12O11� for every given value of O11 (see Table 4). The
results in Table 4 indicate that when O11 � 0, the term ��̂11� is
positive and marginally significant (estimate � .17, lower limit
90% CI � �.01, upper limit 90% CI � .34). However, when
O11 � 1, the term ��̂11 � �̂12� is not significantly different from
zero (estimate� �.15, lower limit 90% CI � �.44, upper limit
90% CI � .11). This means that controlling for the optimal
second-stage intervention option (offered to nonresponders), low
dose of behavioral intervention (A1 � 1) leads to better classroom
performance relative to low dose of medication (A1� �1) for
children who did not receive medication prior to the first stage of
the intervention (O11 � 0). However, there is inconclusive evi-
dence with respect to the difference between the two first-stage

Table 1
Estimated Coefficients for Q2 (N � 81)

Effect Estimate SE

95% confidence interval

Lower limit Upper limit

Intercept 1.36 0.53
O11 (medication prior to first-stage intervention) �0.27 0.31
O12 (baseline: attention-deficit/hyperactivity disorder symptoms) 0.94 0.26
O13 (baseline: oppositional defiant disorder diagnosis) 0.93 0.28
O21 (month of nonresponse) 0.02 0.10
O22 (adherence to first-stage intervention) 0.18 0.27
A1 (first-stage intervention options) 0.03 0.14
A2 (second-stage intervention options) �0.72 0.22 �1.15 �0.29
O22 � A2 (Adherence to First-Stage Intervention � Second-Stage

Intervention Options) 0.97 0.28 0.41 1.53
A1 � A2 (First-Stage Intervention Options � Second-Stage

Intervention Options) 0.05 0.13 �0.22 0.32

Table 2
Estimates of ��̂21 � �̂22A1 � �̂23O22� for Every Combination of A1 and O22 (N � 81)

A1 O22

Estimated
��̂21 � �̂22A1 � �̂23O22� SE

95% confidence interval

Lower limit Upper limit

�1 (medication) 1 (high adherence) 0.20 0.23 �0.26 0.67
�1 (medication) 0 (low adherence) �0.77 0.27 �1.30 �0.23
1 (behavioral intervention) 1 (high adherence) 0.30 0.22 �0.13 0.74
1 (behavioral intervention) 0 (low adherence) �0.67 0.24 �1.14 �0.19
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intervention options for children who received medication at
school prior to the first stage of the intervention. Figure 8 presents
the predicted means for each of the first-stage intervention options
(A1), given whether or not the child received medication at school
prior to the first stage of the intervention (O11).

Overall, the optimal sequence of decision rules based on these
data analysis is as follows:

IF the child received medication prior to the first stage of the inter-
vention,

THEN offer low dose of medication or low-intensity behavioral
intervention.

ELSE IF the child did not receive medication prior to the first stage of
the intervention,

THEN offer low-intensity behavioral intervention.

Then,

IF the child shows inadequate response to the first stage of the
intervention,

THEN IF child’s adherence to first stage of the intervention is low,

THEN augment the first-stage intervention option with the other
type of intervention.

ELSE IF child’s adherence to the first stage of the intervention is
high,

THEN augment the first-stage intervention option with the other
type of intervention or intensify the first-stage intervention option.

ELSE IF the child shows adequate response to the first stage of the
intervention,

THEN continue first-stage intervention.

Discussion

In the current study, we introduced Q-learning: a novel
regression-based data analysis method for constructing high-
quality decision rules. We discussed how Q-learning can be used
to investigate the possibility of more deeply tailored adaptive
interventions than those embedded in the SMART study. We

Figure 7. Predicted mean of classroom performance for each of the second-stage intervention options (A2),
given the first-stage intervention (A1) and adherence to first-stage intervention (O22). BMOD � behavioral
intervention; CI � confidence interval; MED � medication.

Table 3
Estimated Coefficients and Soft-Threshold Confidence Intervals for Q1 (N � 138)

Effect Estimate SE

90% confidence interval

Lower limit Upper limit

Intercept 2.61 0.16
O11 (medication prior to first-stage intervention) �0.37 0.14
O12 (baseline: ADHD symptoms) 0.73 0.11
O13 (baseline: ODD diagnosis) 0.75 0.13
A1 (first-stage intervention options) 0.17 0.07 �0.01 0.34
O11 � A1 (Medication Prior to First-Stage Intervention �

First-Stage Intervention Options) �0.32 0.14 �0.59 �0.06

Note. ADHD � attention-deficit/hyperactive disorder; ODD � oppositional defiant disorder.
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provided a general framework for Q-learning and also demon-
strated how this framework can be generalized for the analysis of
data from four common types of SMART designs. We then dis-
cussed three advantages of the Q-learning approach over a single-
regression-based approach. First, Q-learning appropriately con-
trols for the optimal second-stage intervention option when
assessing the effect of the first-stage intervention. Second, the
effects estimated by Q-learning incorporate both the direct and
indirect effects of the first-stage intervention options, the combi-
nation of which is necessary for making intervention decision
rules. Third, Q-learning reduces potential bias resulting from un-
measured causes of both the tailoring variables and the primary
outcome. Finally, we illustrated the application of Q-learning
using a simplified version of the Adaptive Interventions for Chil-
dren With ADHD study, with the general aim to guide researchers
who wish to apply this method to construct high-quality adaptive
interventions.

Q-learning can be used to estimate the optimal sequence of
decision rules in a straightforward and intuitive manner. Although,
in the current study, we focused on only two intervention stages
and used dichotomous tailoring variables with only two values,
Q-learning can be used for studies with more than two stages, and
can be easily extended to continuous as well as categorical tailor-

ing variables. Additionally, we used effect coding (1, �1) to
denote the randomized intervention options at each stage. How-
ever, dummy coding (0, 1) can also be used. The regression
approach presented here can be generalized via a generalized
linear model in cases of binary (more generally, categorical) out-
comes. An R package for using Q-learning with data from a
two-stage SMART design is available at http://methodology.ps-
u.edu/ra/adap-treat-strat/qlearning.

Still, applying this method involves several challenges. First,
when the data are from observational studies, direct implementa-
tion of this analysis might give biased results due to unmeasured
confounding factors that predict the probability of being offered
intervention options A1 or A2, given past intervention history. This
reflects a selection bias caused by nonrandom treatment. For
example, in the context of the ADHD example, assume that
children’s family functioning affected whether they would be
initially offered medication or behavioral intervention. In such
cases, Q-learning should be implemented in combination with
methodologies that adjust for confounding (see Robins, 1999).

Second, inferential challenges caused by nondifferentiability
should be taken into consideration when applying Q-learning. As
noted previously, in Q-learning, nondifferentiability arises because
the formula for Ỹ (i.e., the dependent variable for the first-stage

Table 4
Estimates of ��̂11 � �̂12O11� for Each Level of O11

O11

Estimated
��̂11 � �̂12O11� SE

90% confidence interval

Lower limit Upper limit

1 (medication prior to first-stage intervention) �0.15 0.12 �0.44 0.11
0 (no medication prior to first-stage intervention) 0.17 0.07 �0.01 0.34

Figure 8. Predicted estimated quality of the second-stage intervention for each of the first-stage intervention
options (A1), given whether or not the child received medication at school prior to first-stage intervention (O11).
CI � confidence interval.
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regression) contains an absolute value function. Because the ab-
solute value function is nondifferentiable at the point 0, the dis-
tribution of the estimators of the regression coefficients in Q1

cannot be consistently approximated by standard methods such as
the bootstrap. In the current analysis, we used the soft-threshold
operation recommended by Chakraborty et al. (2010). Although
the efficiency of this approach in reducing the bias of the inter-
vention effects was documented (see Chakraborty et al., 2010),
improved inferential methods are possible and are currently under
development.

Third, in the current analysis, we considered only two candidate
tailoring variables. However, studies often collect information on
a large set of covariates (e.g., multiple surveys of mental health
status and functioning) from which a smaller subset of variables
must be selected for any practical implementation of adaptive
interventions. Accordingly, researchers might be interested in us-
ing the data to select a subset of tailoring variables that depicts the
estimated optimal sequence of decision rules as closely as possible
to the optimal rule that uses all variables. Biernot and Moodie
(2010) discussed methods for selecting tailoring variables in ran-
domized settings, comparing two selection methods (reducts, a
variable selection tool from computer sciences, and the S-score
criterion proposed by Gunter, Zhu, & Murphy, 2011). Still, addi-
tional research effort should be directed towards developing and
exploring methods for the selection of tailoring variables.

Finally, because our data analysis was illustrative in nature, we
handled missing data (resulting from dropout, unavailability dur-
ing data-collection period, or unwillingness/inability of teachers to
respond) by using listwise deletion, ignoring subjects with incom-
plete information. Because this approach can have serious draw-
backs (see, e.g., Little & Rubin, 1987; Qin, Zhang & Leung, 2009;
Schafer & Olsen, 1998), we recommend that researchers consider
applying modern missing data techniques, such as multiple impu-
tation (Rubin, 1987), which allow more efficient estimation from
incomplete data (see Shortreed, Laber, Pineau, & Murphy, 2010,
for recent research on using multiple imputation to adjust for
missing data in SMART studies).

Despite these challenges, our research demonstrates that the
construction of the optimal sequence of decision rules from data
can be achieved by a relatively simple regression-based procedure.
In light of the growing interest in developing evidence-based
individualized interventions in the behavioral sciences, the current
research is part of an ongoing endeavor to advance methodological
research relevant to adaptive interventions, with the hope of further
increasing researchers’ awareness of the conceptual appeal and
practical advantages of this approach.
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