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TBM ESSAY/OPINION PIECE

Optimizing behavioral health interventions with single-case
designs: from development to dissemination

Jesse Dallery, Ph.D,1 Bethany R Raiff, Ph.D2

Abstract
Over the past 70 years, single-case design (SCD)
research has evolved to include a broad array of
methodological and analytic advances. In this article,
we describe some of these advances and discuss how
SCDs can be used to optimize behavioral health
interventions. Specifically, we discuss how parametric
analysis, component analysis, and systematic
replications can be used to optimize interventions. We
also describe how SCDs can address other features of
optimization, which include establishing generality and
enabling personalized behavioral medicine.
Throughout, we highlight how SCDs can be used during
both the development and dissemination stages of
behavioral health interventions.
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Research methods are tools to discover new
phenomena, test theories, and evaluate interven-
tions. Many researchers have argued that our
research tools have become limited, particularly
in the domain of behavioral health interventions
[1–9]. The reasons for their arguments vary, but
include an overreliance on randomized con-
trolled trials, the slow pace and high cost of
such trials, and the lack of attention to individual
differences. In addition, advances in mobile and
sensor-based data collection now permit real-
time, continuous observation of behavior and
symptoms over extended durations [3, 10, 11].
Such fine-grained observation can lead to tailor-
ing of treatment based on changes in behavior,
which is challenging to evaluate with traditional
methods such as a randomized trial.
In light of the limitations of traditional designs

and advances in data collection methods, a growing
number of researchers have advocated for alterna-
tive research designs [2, 7, 10]. Specifically, one
family of research designs, known as single-case
designs (SCDs), has been proposed as a useful way
to establish the preliminary efficacy of health
interventions [3]. In the present article, we recapit-
ulate and expand on this proposal, and argue that
they can be used to optimize health interventions.

We begin with a description of what we consider
to be a set of criteria, or ideals, for what research
designs should accomplish in attempting to opti-
mize an intervention. Admittedly, these criteria are
self-serving in the sense that most of them constitute
the strengths of SCDs, but they also apply to other
research designs discussed in this volume. Next, we
introduce SCDs and how they can be used to
optimize treatment using parametric and compo-
nent analyses. We also describe how SCDs can
address other features of optimization, which in-
clude establishing generality and enabling person-
alized behavioral medicine. Throughout, we also
highlight how these designs can be used during both
the development and dissemination of behavioral
health interventions. Finally, we evaluate the extent
to which SCDs live up to our ideals.

AN OPTIMIZATION IDEAL
During development and testing of a new interven-
tion, our methods should be efficient, flexible, and
rigorous. We would like efficient methods to help us
establish preliminary efficacy, or “clinically signifi-
cant patient improvement over the course of
treatment” [12] (p. 137). We also need flexible
methods to test different parameters or components
of an intervention. Just as different doses of a drug
treatment may need to be titrated to optimize
effects, different parameters or components of a
behavioral treatment may need to be titrated to
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Implications
Practitioners: practitioners can use single-case
designs in clinical practice to help ensure that an
intervention or component of an intervention is
working for an individual client or group of
clients.

Policy makers: results from a single-case design
research can help inform and evaluate policy
regarding behavioral health interventions.

Researchers: researchers can use single-case
designs to evaluate and optimize behavioral
health interventions.
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optimize effects. It should go without saying that we
also want our methods to be rigorous, and therefore
eliminate or reduce threats to internal validity.
Also, during development, we would like methods

that allow us to assess replications of effects to
establish the reliability and generality of an inter-
vention. Replications, if done systematically and
thoughtfully, can answer questions about for whom
and under what conditions an intervention is
effective. Answering these questions speaks to the
generality of research findings. As Cohen [13] noted
in a seminal article: “For generalization, psycholo-
gists must finally rely, as has been done in all the
older sciences, on replication” (p. 997). Relying on
replications and establishing the conditions under
which an intervention works could also lead to more
targeted, efficient dissemination efforts.
During dissemination, when an intervention is

implemented in clinical practice, we again would
like to know if the intervention is producing a
reliable change in behavior for a particular individ-
ual. (Here, “we” may refer to practitioners in
addition to researchers.) With knowledge derived
from development and efficacy testing, we may be
able to alter components of an intervention that
impact its effectiveness. But, ideally, we would like
to not only alter but verify whether these compo-
nents are working. Also, recognizing that behavior
change is idiosyncratic and dynamic, we may need
methods that allow ongoing tailoring and testing.
This may result in a kind of personalized behavioral
medicine in which what gets personalized, and
when, is determined through experimental analysis.
In addition, during both development and dis-

semination, we want methods that afford innovation.
We should have methods that allow rapid, rigorous
testing of new treatments, and which permit incor-
porating new technologies to assess and treat
behavior as they become available. This might be
thought of as systematic play. Whatever we call it, it
is a hallmark of the experimental attitude in science.

INTRODUCTION TO SINGLE-CASE DESIGNS
SCDs include an array of methods in which each
participant, or case, serves as his or her own control.
Although these methods are conceptually rooted in
the study of cognition and behavior [14], they are
theory-neutral and can be applied to any health
intervention. In a typical study, some behavior or
symptom is measured repeatedly during all condi-
tions for all participants. The experimenter system-
atically introduces and withdraws control and
intervention conditions, and assesses effects of the
intervention on behavior across replications of these
conditions within and across participants. Thus,
these studies include repeated, frequent assessment
of behavior, experimental manipulation of the
independent variable (the intervention or compo-
nents of the intervention), and replication of effects
within and across participants.

The main challenge in conducting a single-case
experiment is collecting data of the same behavior
or symptom repeatedly over time. In other words, a
time series must be possible. If behavior or symp-
toms cannot be assessed frequently, then SCDs
cannot be used (e.g., on a weekly basis, at a
minimum, for most health interventions). Fortunate-
ly, technology is revolutionizing methods to collect
data. For example, ecological momentary assess-
ment (EMA) enables frequent input by an end-user
into a handheld computer or mobile phone [15].
Such input occurs in naturalistic settings, and it
usually occurs on a daily basis for several weeks to
months. EMA can therefore reveal behavioral
variation over time and across contexts, and it can
document effects of an intervention on an individ-
ual’s behavior [15]. Sensors to record physical
activity, medication adherence, and recent drug use
also enable the kind of assessment required for
single-case research [10, 16]. In addition, advances
in information technology and mobile phones can
permit frequent assessment of behavior or symp-
toms [17, 18]. Thus, SCDs can capitalize on the
ability of technology to easily, unobtrusively, and
repeatedly assess health behavior [3, 18, 19].
SCDs suffer from several misconceptions that

may limit their use [20–23]. First, a single case does
not mean “n of 1.” The number of participants in a
typical study is almost always more than 1, usually
around 6 but sometimes as many as 20, 40, or more
participants [24, 25]. Also, the unit of analysis, or
“case,” could be individual participants, clinics,
group homes, hospitals, health care agencies, or
communities [1]. Given that the unit of analysis is
each case (i.e., participant), a single study could be
conceptualized as a series of single-case experi-
ments. Perhaps a better label for these designs
would be “intrasubject replication designs” [26].
Second, SCDs are not limited to interventions that
produce large, immediate changes in behavior. They
can be used to detect small but meaningful changes
in behavior and to assess behavior that may change
slowly over time (e.g., learning a new skill) [27].
Third, SCDs are not quasi-experimental designs
[20]. The conventional notions that detecting causal
relations requires random assignment and/or ran-
dom sampling are false [26]. Single-case experi-
ments are fully experimental and include controls
and replications to permit crisp statements about
causal relations between independent and depen-
dent variables.

VARIETIES OF SINGLE-CASE DESIGNS
The most relevant SCDs to behavioral health
interventions are presented in Table 1. The table
also presents some procedural information and
advantages and disadvantages for each design.
(The material below is adapted from [3]) There are
also a number of variants of these designs, enabling
flexibility in tailoring the design based on practical
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or empirical considerations [27, 28]. For example,
there are several variants to circumvent long periods
of assessing behavior during baseline conditions,
which may be problematic if the behavior is
dangerous, before introducing a potentially effective
intervention [28].
Procedural controls must be in place to make

inferences about causal relations, such as clear,
operational definitions of the dependent variables,

reliable and valid techniques to assess the behavior,
and the experimental design must be sufficient to
rule out alternative hypotheses for the behavior
change. Table 2 presents a summary of methodo-
logical and assessment standards to permit conclu-
sions about treatment effects [29, 30]. These
standards were derived from Horner et al. [29] and
from the recently released What Works Clearing-
house (WWC) pilot standards for evaluating single-

Table 1 | Several single-case designs, including general procedures, advantages, and disadvantages

Design Procedure Advantages Disadvantages

Reversal (ABA,
ABAB)

Baseline conducted, treatment
is implemented, and then
treatment is removed

Within-subject replication;
clear demonstration of an
intervention effect in one
subject

Not applicable if behavior is
irreversible, or when
removing treatment is
undesirable

Multiple
baseline
(interrupted
time series,
stepped
wedge)

Baseline is conducted for
varying durations across
participants, then treatment
is introduced in a staggered
fashion

Treatment does not have to be
withdrawn

No within-subject replication.
Potentially more subjects
needed to demonstrate
intervention effects than
when using reversal design

Changing
criterion

Following a baseline phase,
treatment goals are
implemented. Goals
become progressively more
challenging as they are met

Demonstrates within-subject
control by levels of the
independent variable
without removing treatment;
Useful when gradual change
in behavior is desirable

Not applicable for binary
outcome measures—must
have continuous outcomes

Combined Elements of any treatment can
be combined

Allows for more flexible,
individually tailored designs

If different designs are used
across participants in a
single study, comparisons
across subjects can be
difficult

Table 2 | Quality indicators for single-case research [29]

Dependent variable
• Dependent variables are described with operational and replicable precision
• Each dependent variable is measured with a procedure that generates a quantifiable index
• Dependent variables are measured repeatedly over time
• In the case of remote data capture, the identity of the source of the dependent variable should be authenticated
or validated [3]

Independent variable
• Independent variable is described with replicable precision
• Independent variable is systematically manipulated and under the control of the experimenter
• Overt measurement of the fidelity of implementation of the independent variable is highly desirable

Baseline
• The majority of single-case research will include a baseline phase that provides repeated measurement of a
dependent variable and establishes a pattern of responding that can be used to predict/compare against the
pattern of future performance, if introduction or manipulation of the independent variable did not occur

• Baseline conditions are described with replicable precision
Experimental control/internal validity
• The design provides at least three demonstrations of experimental effect at three different points in time
• The design controls for common threats to internal validity (e.g., permits elimination of rival hypotheses)
• There are a sufficient number of data points for each phase (e.g., minimum of five) for each participant
• The results document a pattern that demonstrates experimental control

Social validity
• The dependent variable is socially important
• The magnitude of change in the dependent variable resulting from the intervention is socially important
• The methods are acceptable to the participant
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case research to inform policy and practice (hereaf-
ter referred to as the SCD standards) [31].
All of the designs listed in Table 1 entail a baseline

period of observation. During this period, the
dependent variable is measured repeatedly under
control conditions. For example, Dallery, Glenn,
and Raiff [24] used a reversal design to assess effects
of an internet-based incentive program to promote
smoking cessation, and the baseline phase included
self-monitoring, carbon monoxide assessment of
smoking status via a web camera, and monetary
incentives for submitting videos. The active ingredi-
ent in the intervention, incentives contingent on
objectively verified smoking abstinence, was not
introduced until the treatment phase.
The duration of the baseline and the pattern of the

data should be sufficient to predict future behavior.
That is, the level of the dependent variable should
be stable enough to predict its direction if the
treatment was not introduced. If there is a trend in
the direction of the anticipated treatment effect
during baseline, or if there is too much variability,
the ability to detect a treatment effect will be
compromised. Thus, stability, or in some cases a
trend in the direction opposite the predicted treat-
ment effect, is desirable during baseline conditions.
In some cases, the source(s) of variability can be

identified and potentially mitigated (e.g., variability
could be reduced by automating data collection,
standardizing the setting and time for data collec-
tion). However, there may be instances when there
is too much variability during baseline conditions,
and thus, detecting a treatment effect will not be
feasible. There are no absolute standards to define
what “too much” variability means [27]. Excessive
variability is a relative term, which is typically
determined by a comparison of performance within
and between conditions (e.g., between baseline and
intervention conditions) in a single-case experiment.
The mere presence of variability does not mean that
a single-case approach should be abandoned, how-
ever. Indeed, identifying the sources of variability
and/or assessing new measurement strategies can be
evaluated using SCDs. Under these conditions, the
outcome of interest is not an increase or a decrease
in some behavior or symptom but a reduction in
variability. Once accomplished, the researcher has
not only learned something useful but is also better
prepared to evaluate the effects of an intervention to
increase or decrease some health behavior.

REVERSAL DESIGNS
In a reversal design, a treatment is introduced after
the baseline period, and then a baseline period is re-
introduced, hence, the “reversal” in this design (also
known as an ABA design, where “A” is baseline and
“B” is treatment). Using only two conditions, such as
a pre-post design, is not considered sufficient to
demonstrate experimental control because other
sources of influence on behavior cannot be ruled

out [31, 32]. For example, a smoking cessation
intervention could coincide with a price increase in
cigarettes. By returning to baseline conditions, we
could assess and possibly rule out the influence of
the price increase on smoking. Researchers also
often use a reversal to the treatment condition.
Thus, the experiment ends during a treatment
period (an ABAB design). Not only is this desirable
from the participant’s perspective but it also pro-
vides a replication of the main variable of
interest—the treatment [33].
Figure 1 displays an idealized, ABAB reversal

design, and each panel shows data from a different
participant. Although all participants were exposed
to the same four conditions, the duration of the
conditions differed because of trends in the condi-
tions. For example, for participant 1, the beginning
of the first baseline condition displays a consistent
downward trend (in the same direction as the
expected text-message treatment effects). If we were
to introduce the smoking cessation-related texts after
only five or six baseline sessions, it would be unclear
if the decrease in smoking was a function of the
independent variable. Therefore, continuing the
baseline condition until there is no visible trend
helps build our confidence about the causal role of
the treatment when it is introduced. The immediate
decrease in the level of smoking for participant 1
when the treatment is introduced also implicates the
treatment. We can also detect, however, an increas-
ing trend in the early portion of the treatment
condition. Thus, we need to continue the treatment
condition until there is no undesirable trend before
returning to the baseline condition. Similar patterns
can be seen for participants 2–4. Based on visual
analysis of Fig. 1, we would conclude that treatment
is exerting a reliable effect on smoking. But, the
meaningfulness of this effect requires additional
considerations (see the section below on “Visual,
Statistical, and Social Validity Analysis”).

Studies using reversal designs typically include at
least four or more participants. The goal is to
generate enough replications, both within partici-
pants and across participants, to permit a confident
statement about causal relations. For example,
several studies on incentive-based treatment to
promote drug abstinence have used 20 participants
in a reversal design [24, 25]. According to the SCD
standards, there must be a minimum of three
replications to support conclusions about experi-
mental control and thus causation. Also, according
to the SCD standards, there must be at least three
and preferably five data points per phase to allow
the researcher to evaluate stability and experimental
effects [31].
There are two potential limitations of reversal

designs in the context of behavioral health interven-
tions. First, the treatment must be withdrawn to
demonstrate causal relations. Some have raised an
ethical objection about this practice [11]. However,
we think that the benefits of demonstrating that a
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treatment works outweigh the risks of temporarily
withdrawing treatment (in most cases). The treat-
ment can also be re-instituted in a reversal design
(i.e., an ABAB design). Second, if the intervention
produces relatively permanent changes in behavior,
then a reversal to pre-intervention conditions may
not be possible. For example, a treatment that
develops new skills may imply that these skills
cannot be “reversed.” Some interventions do not
produce permanent change and must remain in
effect for behavior change to be maintained, such as
some medications and incentive-based procedures.
Under conditions where behavior may not return to
baseline levels when treatment is withdrawn, alter-
native designs, such as multiple-baseline designs,
should be used.

MULTIPLE-BASELINE DESIGNS
In a multiple-baseline design, the durations of the
baselines vary systematically for each participant in
a so-called staggered fashion. For example, one
participant may start treatment after five baseline
days, another after seven baseline days, then nine,
and so on. After baseline, treatment is introduced,
and it remains until the end of the experiment
(i.e., there are no reversals). Like all SCDs, this
design can be applied to individual participants,
clusters of individuals, health care agencies, and
communities. These designs are also referred to
as interrupted time-series designs [1] and stepped
wedge designs [7].
The utility of these designs is derived from

demonstrating that change occurs when, and only
when, the intervention is directed at a particular

participant (or whatever the unit of analysis happens
to be [28]). The influence of other factors, such as
idiosyncratic experiences of the individual or self-
monitoring (e.g., reactivity), can be ruled out by
replicating the effect across multiple individuals. A
key to ruling out extraneous factors is a stable
enough baseline phase (either no trends or a trend in
the opposite direction to the treatment effect). As
replications are observed across individuals, and
behavior changes when and only when treatment is
introduced, confidence that behavior change was
caused by the treatment increases.
As noted above, multiple-baseline designs are

useful for interventions that teach new skills,
where behavior would not be expected to
“reverse” to baseline levels. Multiple-baseline
designs also obviate the ethical concern about
withdrawing treatment (as in a reversal design)
or using a placebo control comparison group (as
in randomized trials), as all participants are
exposed to the treatment with multiple-baseline
designs.
Figure 2 illustrates a simple, two-condition multi-

ple-baseline design replicated across four partici-
pants. As noted above, the experimenter should
introduce treatment only when the data appear
stable during baseline conditions. The durations of
the baseline conditions are staggered for each
participant, and the dependent variable increases
when, and only when, the independent variable is
introduced for all participants. The SCD standards
requires at least six phases (i.e., three baseline and
three treatment) with at least five data points per
phase [31]. Figure 2 suggests reliable increases in

Fig 1 | Example of a reversal design showing experimental control and replications within and between subjects. Each panel
represents a different participant, each of whom experienced two baseline and two treatment conditions
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behavior and that the treatment was responsible for
these changes.

CHANGING CRITERION DESIGN
The changing criterion design is also relevant to
optimizing interventions [34]. In a changing
criterion design, a baseline is conducted until
stability is attained. Then, a treatment goal is
introduced, and goals are made progressively
more difficult. Behavior should track the intro-
duction of each goal, thus demonstrating control
by the level of the independent variable [28]. For
example, Kurti and Dallery [35] used a changing
criterion design to increase activity in six seden-
tary adults using an internet-based contingency
management program to promote walking. Week-
ly step count goals were gradually increased
across 5-day blocks. The step counts for all six

participants increased reliably with each increase
in the goals, thereby demonstrating experimental
control of the intervention. This design has many
of the same benefits of the multiple-baseline
design, namely that a reversal is not required
for ethical or potentially practical reasons (i.e.,
irreversible treatment effects).

VISUAL, STATISTICAL, AND SOCIAL VALIDITY ANALYSIS
Analyzing the data from SCDs involves three
questions: (a) Is there a reliable effect of the
intervention? (b) What is the magnitude of the
effect? and (c) Are the results clinically meaning-
ful and socially valid [31]? Social validity refers
to the extent to which the goals, procedures, and
results of an intervention are socially acceptable
to the client, the researcher or health care
practitioner, and society [36–39]. The first two

Fig 2 | Example of a multiple-baseline design showing experimental control and replications between subjects. Each row
represents a different participant, each of whom experienced a baseline and treatment. The baseline durations differed
across participants
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questions can be answered by visual and statisti-
cal analysis, whereas the third question requires
additional considerations.
The SCD standards prioritizes visual analysis of

the time-series data to assess the reliability and
magnitude of intervention effects [29, 31, 40].
Clinically significant change in patient behavior
should be visible. Visual analysis prioritizes clinical-
ly significant change in health-related behavior as
opposed to statistically significant change in group
behavior [13, 41, 42]. Although several researchers
have argued that visual analysis may be prone to
elevated rates of type 1 error, such errors may be
limited to a narrow range of conditions (e.g., when
graphs do not contain contextual information about
the nature of the plotted behavioral data) [27, 43].
Furthermore, in recent years, training in visual
analysis has become more formalized and rigorous
[44]. Perhaps as a result, Kahng and colleagues
found high reliability among visual analysts in
judging treatment effects based on analysis of 36
ABAB graphs [45]. The SCD standards recom-
mends four steps and the evaluation of six features
of the graphical displays for all participants in a
study, which are displayed in Table 3 [31]. As the
visual analyst progresses through the steps, he or she
also uses the six features to evaluate effects within
and across experimental phases.
In addition to visual analysis, several regression-

based approaches are available to analyze time-
series data, such as autoregressive models, robust
regression, and hierarchical linear modeling (HLM)
[46–49]. A variety of non-parametric statistics are
also available [27]. Perhaps because of the prolifer-
ation of statistical methods, there is a lack of
consensus about which methods are most appropri-
ate in light of different properties of the data (e.g.,

the presence of trends and autocorrelation [43, 50],
the number of data points collected, etc.). A
discussion of statistical techniques is beyond the
scope of this paper. We recommend Kazdin’s [27] or
Barlow and colleague’s [28] textbooks as useful
resources regarding statistical analysis of time-
series data. The SCD standards also includes a
useful discussion of statistical approaches for data
analysis [31].
A variety of effect size calculations have been

proposed for SCDs [13, 51–54]. Although effect size
estimates may allow for rank ordering of most to
least effective treatments [55], most estimates do not
provide metrics that are comparable to effect sizes
derived from group designs [31]. However, one
estimate that provides metrics comparable to group
designs has been developed and tested by Shadish
and colleagues [56, 57]. They describe a stan-
dardized mean difference statistic (d) that is
equivalent to the more conventional d in be-
tween-groups experiments. The d statistic can
also be used to compute power based on the
number of observations in each condition and
the number of cases in an experiment [57]. In
addition, advances in effect size estimates has led
to several meta-analyses of results from SCDs
[48, 58–61]. Zucker and associates [62] explored
Bayesian mixed-model strategy to combining
SCDs using, which allowed population-level
claims about the merits of different intervention
strategies.
Determining whether the results are clinically

meaningful and socially valid can be informed by
visual and most forms of statistical analysis (i.e., not
null-hypothesis significance testing) [42, 63]. One
element in judging social validity concerns the
clinical meaningfulness of the magnitude of behav-

Table 3 | Four steps and six outcome measures to evaluate when conducting visual analysis of time-series data

Four steps to visual analysis of single-case research designs
Step Description
Step 1: document a stable baseline Data show a predictable and stable pattern over time
Step 2: identify within-phase
patterns of responding

Examine data paths within each phase of the study. Examine whether there is
enough data within each phase and whether the data are stable and
predictable

Step 3: compare data across
phases

Compare data within each phase to the adjacent (or similar) phase to assess
whether manipulating the independent variable is associated with an effect

Step 4: integrate information from
all phases

Determine whether there are at least three demonstrations or replications of
an effect at different points in time

Six outcome measures
Name Definition
Level Average of the outcome measures within a phase
Trend The slope of the best-fitting line of the outcome measures within a phase
Variability Range, variance, or standard deviation of the best-fitting line of the outcome

measures within a phase, or the degree of overall scatter
Immediacy of the effect Change in level between the last three data points of one phase and the first

three data points in the next
Overlap Proportion of data from one phase that overlaps with data from the previous

phase
Consistency of data patterns Consistency in the data patterns from phases with the same conditions

ESSAY/OPINION PIECE

TBM page 7 of 14

Author's personal copy



ior change. This judgment can be made by the
researcher or clinician in light of knowledge of the
subject matter, and perhaps by the client being
treated. Depending on factors such as the type of
behavior and the way in which change is measured,
the judgment can also be informed by previous
research on a minimal clinically important differ-
ence (MCID) for the behavior or symptom under
study [64, 65]. The procedures used to generate the
effect also require consideration. Intrusive proce-
dures may be efficacious yet not acceptable. The
social validity of results and procedures should be
explicitly assessed when conducting SCD research,
and a variety of tools have emerged to facilitate such
efforts [37]. Social validity assessment should also be
viewed as a process [37]. That is, it can and should
be assessed at various time points as an intervention
is developed, refined, and eventually implemented.
Social validity may change as the procedures and
results of an intervention are improved and better
appreciated in the society at large.

OPTIMIZATION METHODS AND SINGLE-CASE DESIGNS
The SCDs described above provide an efficient way
to evaluate the effects of a behavioral intervention.
However, in most of the examples above, the
interventions were held constant during treatment
periods; that is, they were procedurally static (cf.
[35]). This is similar to a randomized trial, in which
all components of an intervention are delivered all
at once and held constant throughout the study.
However, the major difference between the exam-
ples above and traditional randomized trials is
efficiency: SCDs usually require less time and fewer
resources to demonstrate that an intervention can
change behavior. Nevertheless, a single, procedural-
ly static single-case experiment does not optimize
treatment beyond showing whether or not it works.
One way to make initial efficacy testing more

dynamic would be to conduct a series of single-case
experiments in which aspects of the treatment are
systematically explored. For example, a researcher
could assess effects of different frequencies, timings,
or tailoring dimensions of a text-based intervention
to promote physical activity. Such manipulation
could also be conducted in separate experiments
conducted by the same or different researchers.
Some experiments may reveal larger effects than
others, which could then lead to further replications
of the effects of the more promising intervention
elements. This iterative development process, with a
focus on systematic manipulation of treatment
elements and replications of effects within and
across experiments, could lead to an improved
intervention within a few years’ time. Arguably, this
process could yield more clinically useful informa-
tion than a procedurally static randomized trial
conducted over the same period [5, 17].
To further increase the efficiency of optimizing

treatment, different components or parameters of an

intervention can be systematically evaluated within
and across single-case experiments. There are two
ways to optimize treatment using these methods:
parametric and component analyses.

PARAMETRIC ANALYSIS
Parametric analysis involves exposing participants
to a range of values of the independent variable, as
opposed to just one or two values. To qualify as a
parametric analysis, three is the minimum number
of values that must be evaluated, as this number is
the minimum to evaluate the function form relating
the independent to the dependent variable. One
goal of a parametric analysis is to identify the
optimal value that produces a behavioral outcome.
Another goal is to identify general patterns of
behavior engendered by a range of values of the
independent variable [26, 63].
Many behavioral health interventions can be

delivered at different levels [66] and are therefore
amenable to parametric analysis. For example, text-
based prompts can be delivered at different frequen-
cies, incentives can be delivered at different magni-
tudes and frequencies, physical activity can occur at
different frequencies and intensities, engagement in
a web-based program can occur at different levels,
medications can be administered at different doses
and frequencies, and all of the interventions could
be delivered for different durations.
The repeated measures, and resulting time-series

data, that are inherent to all SCDs (e.g., reversal and
multiple-baseline designs) make them useful designs
to conduct parametric analyses. For example, two
doses of a medication, low versus high, labeled B
and C, respectively, could be assessed using a
reversal design [67]. There may be several possible
sequences to conduct the assessment such as
ABCBCA or ABCABCA. If C is found to be more
effective of the two, it might behoove the researcher
to replicate this condition using an ABCBCAC
design. A multiple baseline across participants could
also be conducted to assess the two doses, one dose
for each participant, but this approach may be
complicated by individual variability in medication
effects. Instead, the multiple-baseline approach
could be used on a within-subject basis, where the
durations of not just the baselines but of the different
dose conditions are varied across participants [68].
Guyatt and colleagues [5] provide an excellent

discussion about how parametric analysis can be
used to optimize an intervention. The intervention
was amitriptyline for the treatment of fibrositis. The
logic and implications of the research tactics,
however, also apply to other interventions that have
parametric dimensions. At the time that the research
was conducted, a dose of 50 mg/day was the
standard recommendation for patients. To deter-
mine whether this dose was optimal for a given
individual, the researchers first exposed participants
to low doses, and if no response was noted relative
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to placebo, then they systematically increased the
dose until a response was observed, or until they
reached the maximum of 50 mg/day. In general,
their method involved a reversal design in which
successively higher doses alternated with placebo.
So, for example, if one participant did not respond
to a low dose, then doses might be increased to
generate an ABCD design, where each successive
letter represents a higher dose (other sequences were
arranged as well). Parametrically examining doses in
this way, and examining individual subject data, the
researchers found that some participants responded
favorably at lower doses than 50 mg/day (e.g., 10 or
20 mg/day). This was an important finding because
the higher doses often produced unwanted side
effects. Once optimal doses were identified for
individuals, the researchers were able to conduct
further analyses using a reversal design, exposing
them to either their optimal dose or placebo on
different days.
Guyatt and colleagues also investigated the min-

imum duration of treatment necessary to detect an
effect [5]. Initially, all participants were exposed to
the medication for 4 weeks. Visual analysis of the
time-series data revealed that medication effects
were apparent within about 1–2 weeks of exposure,
making a 4-week trial unnecessary. This discovery
was replicated in a number of subjects and led
them to optimize future, larger studies by only
conducting a 2-week intervention. Investigating
different treatment durations, such as this, is also
a parametric analysis.
Parametric analysis can detect effects that may be

missed using a standard group design with only one
or two values of the independent variable. For
example, in the studies conducted by Guyatt and
colleagues [5], if only the lowest dose of amitripty-
line had been investigated using a group approach,
the researchers may have incorrectly concluded that
the intervention was ineffective because this dose
only worked for some individuals. Likewise, if only
the highest dose had been investigated, it may have
been shown to be effective, but potentially more
individuals would have experienced unnecessary
side effects (i.e., the results would have low social
validity for these individuals). Perhaps most impor-
tantly, in contrast to what is typically measured in a
group design (e.g., means, confidence intervals, etc.),
optimizing treatment effects is fundamentally a
question about an individual’s behavior.

COMPONENT ANALYSIS
A component analysis is “any experiment designed
to identify the active elements of a treatment
condition, the relative contributions of different
variables in a treatment package, and/or the neces-
sary and sufficient components of an intervention”
[69]. Behavioral health interventions often entail
more than one potentially active treatment element.
Determining the active elements may be important

to increase dissemination potential and decrease
cost. Single-case research designs, in particular the
reversal and multiple-baseline designs, may be used
to perform a component analysis. The essential
experimental ingredients, regardless of the method,
are that the independent variable(s) are systemati-
cally introduced and/or withdrawn, combined with
replication of effects within and/or between subjects.
There are two main variants of component

analyses: the dropout and add-in analyses. In a
dropout analysis, the full treatment package is
presented following a baseline phase and then
components are systematically withdrawn from the
package. A limitation of dropout analyses is when
components produce irreversible behavior change
(i.e., learning a new skill). Given that most interven-
tions seek to produce sustained changes in health-
related behavior, dropout analyses may have limited
applicability. Instead, in add-in analyses, compo-
nents can be assessed individually and/or in combi-
nation before the full treatment package is assessed
[69]. Thus, a researcher could conduct an ABACAD
design, where A is baseline, B and C are the
individual components, and D is the combination
of the two B and C components. Other sequences
are also possible, and which one is selected will
require careful consideration. For example, se-
quence effects should be considered, and re-
searchers could address these effects through
counterbalancing, brief “washout” periods, or ex-
plicit investigation of these effects [26]. If sequence
effects cannot be avoided, combined SCD and
group designs can be used to perform a component
analysis. Thus, different components of a treatment
package can be delivered between two groups, and
within each group, a SCD can be used to assess
effects of each combination of components. Al-
though very few component analyses have assessed
health behavior or symptoms per se as the outcome
measure, there are a variety of behavioral interven-
tions that have been evaluated using component
analysis [63]. For example, Sanders [70] conducted a
component analysis of an intervention to decrease
lower back pain (and increase time standing/walk-
ing). The analysis consisted of four components:
functional analysis of pain behavior (e.g., self-
monitoring of pain and the conditions that precede
and follow pain), progressive relaxation training,
assertion training, and social reinforcement of
increased activity. Sanders concluded that both
relaxation training and reinforcement of activity
were necessary components (see [69] for a discus-
sion of some limitations of this study).
Several conclusions can be drawn about the

effects of the various components in changing
behavior. The data should first be evaluated to
determine the extent to which the effects of individ-
ual components are independent of one another. If
they are, then the effects of the components are
additive. If they are not, then the effects are
multiplicative, or the effects of one component
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depend on the presence of another component.
Figure 3 presents simplified examples of these two
possibilities using a reversal design and short data
streams (adapted from [69]). The panel on the left
shows additive effects, and the panel on the right
shows multiplicative effects. The data also can be
analyzed to determine whether each component is
necessary and sufficient to produce behavior
change. For instance, the panel on the right shows
that neither the component labeled X (e.g., self-
monitoring of health behavior) nor the component
labeled Y (e.g., counseling to change health behav-
ior) is sufficient, and both components are necessary.
If two components produce equal changes in
behavior, and the same amount of change when
both are combined, then either component is
sufficient but neither is necessary.
The logic of the component analyses described

here is similar to new methods derived from an
engineering framework [2, 9, 71]. During the initial
stages of intervention development, researchers use
factorial designs to allocate participants to different
combinations of treatment components. These de-
signs, called fractional factorials because not all
combinations of components are tested, can be used
to screen promising components of treatment pack-
ages. The components tested may be derived from
theory or working assumptions about which compo-
nents and combinations will be of interest, which is the
same process used to guide design choices in SCD
research. Just as engineering methods seek to isolate
and combine active treatment components to optimize
interventions, so too do single-case methods. The
main difference between approaches is the focus on
the individual as the unit of analysis in SCDs.

OPTIMIZING WITH REPLICATIONS AND ESTABLISHING
GENERALITY
Another form of optimization is an understanding of
the conditions under which an intervention may be
successful. These conditions may relate to particular
characteristics of the participant (or whatever the
unit of analysis happens to be) or to different

situations. In other words, optimizing an interven-
tion means establishing its generality.
In the context of single-case research, generality

can be demonstrated experimentally in several
ways. The most basic way is via direct replication
[26]. Direct replication means conducting the same
experiment on the same behavioral problem across
several individuals (i.e., a single-case experiment).
For example, Raiff and Dallery [72] achieved a
direct replication of the effects of internet-based
contingency management (CM) on adherence to
glucose testing in four adolescents. One goal of the
study was to establish experimental control by the
intervention and to minimize as many extraneous
factors as possible. Overall, direct replication can
help establish generality across participants. It
cannot answer questions about generality across
settings, behavior change agents, target behaviors,
or participants that differ in some way from the
original experiment (e.g., to adults diagnosed with
type 1 diabetes). Instead, systematic replication can
answer these questions. In a systematic replication,
the methods from previous direct replication studies
are used in a new setting, target behavior, group of
participants, and so on [73]. The Raiff and Dallery
study, therefore, was also a systematic replication of
effects of internet-based CM to promote smoking
cessation to a new problem and to a new group of
participants because the procedure had originally
been tested with adult smokers [24]. Effects of
internet-based CM for smoking cessation also were
systematically replicated in an application to adoles-
cent smokers using a single-case design [74].
Systematic replication also occurs with parametric

manipulation [63]. In other words, rather than
changing the type of participants or setting, we
change the value of the independent variable. In
addition to demonstrating an optimal effect, para-
metric analysis may also reveal boundary condi-
tions. These may be conditions under which an
intervention no longer has an effect, or points of
diminishing returns in which further increases in
some parameter produce no further increases in
efficacy. For example, if one study was conducted

Fig 3 | Two examples of possible results from a component analysis. BSL baseline, X first component, Y second component.
The panel on the left shows an additive effect of components X and Y, and the panel of the right shows a multiplicative effect of
components X and Y
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showing that 30 min of moderate exercise produced
a decrease in cigarette cravings, a systematic repli-
cation, using parametric analysis, might be conduct-
ed to determine the effects of other exercise
durations (e.g., 5, 30, 60 min) on cigarette craving
to identify the boundary parameters (i.e., the
minimum and maximum number of minutes of
exercise needed to continue to see changes in
cigarette craving). Boundary conditions are critical
in establishing generality of an intervention. In most
cases, the only way to assess boundary conditions is
through experimental, parametric analysis of an
individual’s behavior.
By carefully choosing the characteristics of the

individuals, settings, or other relevant variables in a
systematic replication, the researcher can help
identify the conditions under which a treatment
works. To be sure, as with any new treatment,
failures will occur. However, the failure does not
detract from the prior successes: “…a procedure can
be quite valuable even though it is effective under a
narrow range of conditions, as long as we know
what those conditions are” [75]. Such information is
important for treatment recommendations in a
clinical setting, and scientifically, it means that the
conditions themselves may become the subject of
experimental analysis.
This discussion leads to a type of generality called

scientific generality [63], which is at the heart of a
scientific understanding of behavioral health inter-
ventions (or any intervention for that matter). As
described by Branch and Pennypacker [63], scien-
tific generality is characterized by knowledgeable
reproducibility, or knowledge of the factors that are
required for a phenomenon to occur. Scientific
generality can be attained through parametric
and component analysis, and through systematic
replication. One advantage of a single-case
approach to establishing generality is that a
series of strategic studies can be conducted with
some degree of efficiency. Moreover, the data
intimacy afforded by SCDs can help achieve
scientific generality about behavioral health
interventions.

PERSONALIZED BEHAVIORAL MEDICINE
Personalized behavioral medicine involves three
steps: assessing diagnostic, demographic, and other
variables that may influence treatment outcomes;
assigning an individual to treatment based on this
information; and using SCDs to assess and tailor
treatment. The first and second steps may be
informed by outcomes using SCDs. In addition,
the clinician may be in a better position to
personalize treatment with knowledge derived from
a body of SCD research about generality, boundary
conditions, and the factors that are necessary for an
effect to occur. (Of course, this information can
come from a variety of sources—we are simply
highlighting how SCDs may fit in to this process.)

In addition, with advances in genomics and
technology-enabled behavioral assessment prior to
treatment (i.e., a baseline phase), the clinician may
further target treatment to the unique characteristics
of the individual [76]. Genetic testing is becoming
more common before prescribing various medica-
tions [17], and it may become useful to predict
responses for treatments targeting health behavior.
Baseline assessment of behavior using technology
such as EMA may allow the clinician to develop a
tailored treatment protocol. For example, assess-
ment could reveal the temporal patterning of risky
situations, such as drinking alcohol, having an
argument, or long periods of inactivity. A text-based
support system could be tailored such that the
timings of texts are tied to the temporal pattern of
the problem behavior. The baseline assessment may
also be useful to simply establish whether a problem
exists. Also, the data path during baseline may
reveal that behavior or symptoms are already
improving prior to treatment, which would suggest
that other, non-treatment variables are influencing
behavior. Perhaps more importantly, compared to
self-report, baseline conditions provide a more
objective benchmark to assess effects of treatment
on behavior and symptoms.
In addition to greater personalization at the start

of treatment, ongoing assessment and treatment
tailoring can be achieved with SCDs. Hayes [77]
described how parametric and component analyses
can be conducted in clinical practice. For example,
reversal designs could be used to conduct a
component analysis. Two components, or even
different treatments, could be systematically intro-
duced alone and together. If the treatments are
different, such comparisons would also yield a kind
of comparative effectiveness analysis. For example,
contingency contracting and pharmacotherapy for
smoking cessation could be presented alone using a
BCBC design (where B is contracting and C is
pharmacotherapy). A combined treatment could
also be added, and depending on results, a return
to one or the other treatment could follow (e.g.,
BCDCB, where D is the combined treatment).
Furthermore, if a new treatment becomes available,
it could be tested relative to an existing standard
treatment in the same fashion. One potential
limitation of such designs is when a reversal to
baseline conditions (i.e., no treatment) is necessary
to document treatment effects. Such a return to
baseline may be challenging for ethical, reimburse-
ment, and other issues.
Multiple-baseline designs also can be used in

clinical contexts. Perhaps the simplest example
would be a multiple baseline across individuals with
similar problems. Each individual would experience
an AB sequence, where the durations of the baseline
phases vary. Another possibility is to target different
behavior in the same individual in a multiple-
baseline across behavior design. For example, a
skills training program to improve social behavior
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could target different aspects of such behavior in a
sequential fashion, starting with eye contact, then
posture, then speech volume, and so on. If behavior
occurs in a variety of distinct settings, the treatment
could be sequentially implemented across these
settings. Using the same example, treatment could
target social behavior at family events, work, and
different social settings. It can be problematic if
generalization of effects occurs, but it may not
necessarily negate the utility of such a design [27].
Multiple-baseline designs can be used in contexts

other than outpatient therapy. Biglan and associates
[1] argued that such designs are particularly useful in
community interventions. For example, they de-
scribed how a multiple baseline across communities
and even states could be used to assess effects of
changes in drinking age on car crashes. These
designs may be especially useful to evaluate tech-
nology-based health interventions. A web-based
program could be sequentially rolled out to different
schools, communities, or other clusters of individ-
uals. Although these research designs are also
referred to as interrupted time series and stepped
wedge designs, we think it may be more likely for
researchers and clinicians to access the rich network
of resources, concepts, and analytic tools if these
designs are subsumed under the category of multi-
ple-baseline designs.
The systematic comparisons afforded by SCDs

can answer several key questions relevant to opti-
mization. The first question a clinician may have is
whether a particular intervention will work for his or
her client [27]. It may be that the client has such a
unique history and profile of symptoms, the clini-
cian may not be confident about the predictive
validity of a particular intervention for his or her
client [6]. SCDs can be used to answer this question.
Also, as just described, they can address which of
two treatments work better, whether adding two
treatments (or components) together works better
than either one alone, which level of treatment is
optimal (i.e., a parametric analysis), and whether a
client prefers one treatment over another (i.e., via
social validity assessment). Furthermore, the use of
SCDs in practice conforms to the scientist-practi-
tioner ideal espoused by training models in clinical
psychology and allied disciplines [78].

OPTIMIZING FROM DEVELOPMENT TO DISSEMINATION
We are now in a position to evaluate whether SCDs
live up to our ideals about optimization. During
development, SCDs may obviate some logistical
issues in using between-group designs to conduct
initial efficacy testing [3, 8]. Specifically, the costs
and duration needed to conduct a SCD to establish
preliminary efficacy would be considerably lower
than traditional randomized designs. Riley and
colleagues [8] noted that randomized trials take
approximately 5.5 years from the initiation of
enrollment to publication, and even longer from

the time a grant application is submitted. In addition
to establishing whether a treatment works, SCDs
have the flexibility to efficiently address which
parameters and components are necessary or opti-
mal. In light of traditional methods to establish
preliminary efficacy and optimize treatments, Riley
and colleagues advocated for “rapid learning re-
search systems.” SCDs are one such system.
Although some logistical issues may be mitigated

by using SCDs, they do not necessarily represent
easy alternatives to traditional group designs. They
require a considerable amount of data per partici-
pant (as opposed to a large number of individuals in
a group), enough participants to reliably demon-
strate experimental effects, and systematic manipu-
lation of variables over a long duration. For the vast
majority of research questions, however, SCDs can
reduce the resource and time burdens associated
with between group designs and allow the investi-
gator to detect important treatment parameters that
might otherwise have been missed.
SCDs can minimize or eliminate a number of

threats to internal validity. Although a complete
discussion of these threats is beyond the scope of
this paper (see [1, 27, 28]), the standards listed in
Table 1 can provide protection against most threats.
For example, the threat known as “testing” refers to
the fact that repeated measurement alone may
change behavior. To address this, baseline phases
need to be sufficiently long, and there must be
enough within and/or between participant replica-
tions to rule out the effect of testing. Such logic
applies to a number of other potential threats (e.g.,
instrumentation, history, regression to the mean,
etc.). In addition, a plethora of new analytic
techniques can supplement experimental techniques
to make inferences about causal relations. Combin-
ing SCD results in meta-analyses can yield informa-
tion about comparative effects of different
treatments, and combing results using Bayesian
methods may yield information about likely effects
at the population level.

Because of their efficiency and rigor, SCDs permit
systematic replications across types of participants,
behavior problems, and settings. This research
process has also led to “gold-standard,” evidence-
based treatments in applied behavior analysis and
education [29, 79]. More importantly, in several
fields, such research has led to scientific under-
standing of the conditions under which treatment
may be effective or ineffective [79, 80]. The field
of applied behavior analysis, for example, has
matured to the extent that individualized assess-
ment of the causes of problem behavior must
occur before treatment recommendations.
Our discussion of personalized behavioral medi-

cine highlighted how SCDs can be used in clinical
practice to evaluate and optimize interventions. The
advent of technology-based assessment makes SCDs
much easier to implement. Technology could propel
a “super convergence” of SCDs and clinical practice
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[76]. Advances in technology-based assessment
can also promote the kind of systematic play
central to the experimental attitude. It can also
allow testing of new interventions as they become
available. Such translational efforts can occur in
several ways: from laboratory and other con-
trolled settings to clinical practice, from SCD to
SCD within clinical practice, and from random-
ized efficacy trials to clinical practice.

CONCLUSION
Over the past 70 years, SCD research has evolved to
include a broad array of methodological and
analytic advances. It also has generated evidence-
based practices in health care and related disciplines
such as clinical psychology [81], substance abuse
[82, 83], education [29], medicine [4], neuropsychol-
ogy [30], developmental disabilities [27], and occu-
pational therapy [84]. Although different methods
are required for different purposes, SCDs are ideally
suited to optimize interventions, from development
to dissemination.
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