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Clinical Trials 2010; 7: 653–663ARTICLE

A modified toxicity probability interval method
for dose-finding trials

Yuan Ji a, Ping Liu b, Yisheng Li b and B Nebiyou Bekele b

Background Building on earlier work, the toxicity probability interval (TPI) method,
we present a modified TPI (mTPI) design that is calibration-free for phase I trials.
Purpose Our goal is to improve the trial conduct and provide more effective
designs while maintaining the simplicity of the original TPI design.
Methods Like the TPI method, the mTPI consists of a practical dose-finding
scheme guided by the posterior inference for a simple Bayesian model. However,
the new method proposes improved dose-finding decision rules based on a new
statistic, the unit probability mass (UPM). For a given interval and a probability
distribution, the UPM is defined as the ratio of the probability mass of the interval to
the length of the interval.
Results The improvement through the use of the UPM for dose finding is three-
fold: (1) the mTPI method appears to be safer than the TPI method in that it puts
fewer patients on toxic doses; (2) the mTPI method eliminates the need for
calibrating two key parameters, which is required in the TPI method and is a known
difficult issue; and (3) the mTPI method corresponds to the Bayes rule under a
decision theoretic framework and possesses additional desirable large- and small-
sample properties.
Limitation The proposed method is applicable to dose-finding trials with a binary
toxicity endpoint.
Conclusion The new method mTPI is essentially calibration free and exhibits
improved performance over the TPI method. These features make the mTPI a
desirable choice for the design of practical trials. Clinical Trials 2010; 7: 653–663.
http://ctj.sagepub.com

Introduction

Dose-finding trials in oncology aim to find the
maximum tolerated dose (MTD), the highest dose
at which the toxicity probability is less than a target
probability, denoted by pT (e.g., pT¼0.30). Usually
a grid of dose levels is predetermined before the
trial starts. Patients are enrolled sequentially and
adaptively treated at a given dose based on the
observed dose-limiting toxicity (DLT).

Currently, the most widely used method in
practice is the 3þ3 method. Since the introduction
of the 3þ3 method, a large number of statistical
methods have been proposed that attempt to
improve the design of phase I dose-finding oncol-
ogy trials. The most prominent work among these
is perhaps the continual reassessment method
(CRM) by O’Quigley et al. [1] and its many
extensions [2–6], among others. The basic idea of
the CRM is to sequentially update the estimates of
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dose toxicity probabilities and assign future
patients adaptively to the dose deemed closest to
the MTD.

Although model-based methods have shown to
be superior to the algorithm-based 3þ3 method
[7], the simplicity of the 3þ3 method still makes it
by far the most popular method chosen for
practical trials. There are two reasons for this.
First, using model-based methods to monitor a
practical trial usually requires a computer program
that allows investigators to obtain dose assign-
ments in real time. This is an elegant but tedious
matter that calls for close collaboration between
physicians, statisticians, and computer program-
mers. Second, most model-based designs require
the conduct of computer simulations before the
trial starts, in which statisticians must calibrate the
design parameters to achieve desirable operating
characteristics. For example, the CRM requires users
to provide a set of prior estimates of the toxicity
probabilities for the candidate doses to be used in
the trial. This set should be elicited from the
investigators. However, the performance of the
CRM under the computer simulations will depend
on the agreement of these prior estimates and the
true toxicity probabilities specified in the simula-
tions. A poorly elicited set of prior estimates will
lead to poor operating characteristics. Therefore,
tuning of the prior estimates becomes an important
but sometimes challenging process. Recent
attempts [8] have been made to alleviate this
issue, although nontrivial calibration is still
required.

Ji et al. [9] provided a framework different from
the CRM. They proposed using simple Bayesian
models to describe the observed toxicity data, and
introduced a set of decision rules based on toxicity
posterior intervals (TPI). Their method is implemen-
ted in an Excel spreadsheet, which reduces the
burden in making dose assignments during an
ongoing trial. However, the performance of the TPI
method in certain cases is sensitive to two
key parameters, namely K1 and K2, which are
two weights that define three toxicity intervals, (0,
pT�K1�1), [pT� k1�1, pTþ k2�2], and (pTþK2�2, 1),
where �1 and �2 are larger values of K1 and K2, means
more deviations from the target pT. The posterior
probabilities of these three intervals are used for
making dose-assignment decisions. A default set of
values for K1 and K2 was proposed in [9], but it is
unclear how sensitive their method is to changes in
these values. We have conducted simulations
(results not shown) and found that different values
of K1 and K2 could lead to different results.

In this article, we propose a calibration-free
modified TPI (mTPI) design. The implementation
of the method is essentially effortless, although the
underlying statistical theory is not trivial.

Implementation of the mTPI method does not
require tuning of model parameters, and computer
simulations can be carried out in an Excel macro. In
addition, similar to the TPI design in [9], the mTPI
design is transparent in the sense that physicians
can see all the possible dose-finding decisions
before the trial starts. Consequently, patients
enrolled into the trial can be allocated to appro-
priate doses without conducting additional
computations.

The decision rules of the mTPI design are based
on the unit probability mass (UPM). For a given
interval on the real line, the UPM is defined as the
ratio of the probability of the interval (based on a
probability measure) and the length of the interval.
For example, for a continuous random variable X
with cumulative distribution function F(x), the
UPM of an interval (a, b] under the distribution
F(x) is {F(b)� F(a)}/(b� a). The mTPI method only
requires a definition of an equivalence interval (EI),
[pT� e1, pTþ e2], in which any dose is considered as
a potential candidate for the true MTD. We will
show that the performance of the mTPI method is
robust to the definition of the EI. Therefore, one
does not need to calibrate the EI for different trials
and physicians. Upon determination of the EI, we
compute the mTPI of the three resulting toxicity
intervals and choose one of three actions, escalat-
ing to the higher dose, staying at the same dose, or
de-escalating to the lower dose, depending on
which corresponds to the interval with the
lowest UPM.

In the section ‘Dose-finding method’, we intro-
duce the basic idea of the mTPI method as well as the
dose-finding algorithm. In the sections ‘Probability
model’ and ‘Large-sample properties’, we present
the UMP method and its theoretical properties. We
evaluate the performance of the new method under
small sample sizes and conduct sensitivity analyses
in the section ‘Simulation study’. We describe
software in the section ‘Software’ and provide
discussions in the last section.

Dose-finding method

The derivation of the dose-finding rules for the
mTPI method involves two steps. In the first step,
we introduce an EI, which leads to three toxicity
probability intervals that partition (0, 1). Building
upon the EI, we set up a decision-theoretic frame-
work and derive a Bayes rule. We show that the
Bayes rule is equivalent to computing the UPM for
the toxicity probability intervals.

Consider d dose levels of a certain cytotoxic drug
in a phase I trial. Let pi be the unknown probability
of toxicity associated with the i-th dose, i¼1, . . . , d.
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The toxicity probability usually increases with the
dose level, so we assume p1< p2< . . .< pd.

Suppose that dose i is currently used for treating
patients and ni (ni�1) patients have been treated at
this dose. Suppose xi (xi�ni) patients experienced
toxicity. Based on the observed values of xi and ni,
we assume that physicians choose one of the
following three decisions: de-escalate (D) to the
next lower dose (i�1); stay (S) at the same dose i; or
escalate (E) to the next higher dose (iþ1).
Depending on the decision, the next cohort is
treated at dose j2 {i�1, i, iþ1}; the values of xj and
nj are then observed for the new cohort, and an
appropriate decision is chosen once again. The trial
thus proceeds with the next cohort.

Equivalence interval

The EI is defined as [pT� e1, pTþ e2], e1, e2�0. It
contains those doses considered so close to the true
MTD that physicians would agree to select them as
the estimated MTD. An EI for the trial is elicited
from collaborating physicians. For example, if the
true MTD has a toxicity probability pT¼0.3, then a
physician may agree to select any dose between
[0.25, 0.35] as the estimated MTD. In a different
trial, another physician may agree on an EI of [0.2,
0.4]. Compared with other model-based designs,
the definition of EI does not increase the complex-
ity of the design for phase I trials. The reason is that
for almost all the model-based methods, the
probability of actually finding a dose with a toxicity
probability equal to pT is zero. Hence, an implicit
criterion usually is defined as the distance between
the toxicity probability of a given dose and the
target pT. For example, in the CRM, such a measure
is an L1 norm, that is, |pi� pT|. Here, we explicitly
ask the physicians to express their intrinsic measure
of such a distance in the form of EIs. A simple guide
for elicitation of the EI is provided below.

� Ask the physician to indicate the lowest toxicity
probability that he/she would be comfortable
using to treat future patients without dose
escalation. This determines pT� e1.
� Ask the physician to indicate the highest toxicity

probability that he/she would be comfortable
using to treat future patients without dose
de-escalation. This determines pTþ e2.

Dose-finding algorithm

Defining an EI results in the partition of the unit
interval (0, 1) into three subintervals; (0, pT� e1),

[pT� e1, pTþ e2], and (pTþ e2, 1). Doses in these
three intervals are deemed lower, close to, and
higher than the MTD, respectively. With this
clarification, we propose a dose-finding algorithm.

A dose-finding algorithm with additional safety
rules is given below. These additional rules are
important for practical concerns [9].

� Suppose that the current tried dose is i,
i2 {1, . . . , d}. After the toxicity outcomes of the
last cohort are observed, choose E, S, or D if the
interval (0, pT� e1), [pT� e1, pTþ e2], or (pTþ e2, 1)
has the largest UPM, respectively. Figure 1
provides an illustration of how the UPM is
associated with dose-finding decisions for an EI.
� Safety rule 1 (early termination): Suppose that dose

1 has been used to treat patients. If
Pr(p1> pT|data)> � for a � close to 1 (say,
�¼0.95), then terminate the trial due to exces-
sive toxicity. Otherwise, terminate the trial when
the maximum sample size is reached.
� Safety rule 2 (dose exclusion): Suppose that the

decision is E, to escalate from dose i to (iþ1). If
Pr(piþ1> pT|data)> �, for a � close to 1 (say,
�¼0.95), then treat the next cohort of patients at
dose i and exclude doses (iþ1) and higher from
the trial, that is, these doses will never be used
again in the trial.

UPM for
(0, p_T–epsilon_1)

UPM for
(p_T–epsilon_1, p_T +epsilon_2)

UPM for
(pT + epsilon_2,1)

2.
0

1.
5
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D
en

si
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Figure 1 A demonstration of the UPMs for three intervals as
defined in the ‘Introduction’ section. The two vertical lines

result in three intervals on the X-axis. The UPM for each of the

three intervals is indicated by the dashed horizontal line. The
equivalence interval in the middle has the highest UPM under

the distribution defined by the density curve
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� At the end of the trial, select as the estimated
MTD the dose with the smallest difference
jp̂i � pT j among all the tried doses i for which
Pr(pi> pT|data) <¼ �. Here p̂i is a sensible esti-
mate of pi, for example, the isotonically trans-
formed posterior mean [9]. If two or more doses
tie for the smallest difference, the toxicity
probabilities of the tied doses can only be
(pTþ q) or (pT� q) for some q2 (0, pT). Perform
the following rule:

– If there is at least one dose at which p̂i equals
(pT� q), choose the highest dose among those at
which p̂i equal (pT� q);
– Otherwise, choose the lowest dose among the
tied doses.

Safety rule 2 will terminate a trial early due to
high toxicity at the starting dose. This rule is
based on a posterior probability, thus taking into
consideration all the data at the starting dose.
However, due to the thresholding, there is a small
probability that a trial could be terminated even
when the starting dose is safe, which is the type I
error associated with this rule.

Unlike other rules in the algorithm, which
concern dose finding, the last rule deals with the
selection of the MTD when the trial ends, which is
an issue related to statistical inference. We propose
to use data from all the patients across doses in this
step so that we can borrow strength when estimat-
ing the final MTD. We believe that more investiga-
tion into this step can be carried out to refine the
procedure, perhaps in a similar fashion as Stylianou
and Flournoy [10] did for a different dose-finding
design.

Probability model

We now focus our attention on technical details of
the method. In this section, we provide a statistical
framework that leads to the above dose-finding
algorithm.

First, we propose a set of penalty functions for
choosing a proper decision from among D, S, or E,
which is similar to the one in Ji et al. [11]. For dose i,
define the penalty functions

LðD, piÞ ¼

ND, if pi � pT<� �1;
KD, if � �1 � pi � pT � �2;
0, if pi � pT>�2;

8<
:

LðS, piÞ ¼

NS, if pi � pT<� �1;

0, if � �1 � pi � pT � �2;

MS, if pi � pT>�2;

8><
>:

LðE, piÞ ¼

0, if pi � pT<� �1;

KE, if � �1 � pi � pT � �2;

ME, if pi � pT>�2:

8><
>:

The six penalties KD, KE, MS, ME, NS, and ND are
positive real numbers. For example, quantities KD

or ND are the penalties for choosing decision D
(de-escalate) when dose i is either within the EI or
lower than (pT� e1). The values of MS, NS, KE, and
ME can be interpreted similarly. We assign a zero
penalty for choosing the right decision.

We derive a straightforward decision rule for
dose finding based on posterior expected penalties.
Let X ¼ {(x1, n1), . . . , (xd, nd)} be the accumulated
data in which ni patients have been treated at dose i
and xi of them have experienced toxicities, for
i¼1, . . . , d. The information set corresponding to X
is a �-algebra, F ¼ �(X ). The likelihood is the
product of the d binomial probability mass func-
tions defined by (x1, n1), . . . , (xd, nd). Suppose that
the prior distribution for the vector p¼ (p1, . . . , pd)

0

has a density �(p). Define

RðD, piÞ ¼ EfLðD, piÞjFg,

RðS, piÞ ¼ EfLðS, piÞjFg, and

RðE, piÞ ¼ EfLðE, piÞjFg

as the three posterior expected penalties corre-
sponding to �(p). Let

qDi ¼ Prð pi � pT>�2jF Þ,

qSi ¼ Prð��1 � pi � pT � �2jF Þ, and

qEi ¼ Prð pi � pT<� �1jF Þ;

then

RðD, piÞ ¼ KDqSi þNDqEi;

RðS, piÞ ¼ MSqDi þNSqEi; and

RðE, piÞ ¼ KEqSi þMEqDi:

ð1Þ

The Bayes rule that achieves the minimum poster-
ior expected penalty is given by

Bi ¼ arg min
m2fD,S,Eg

Rðm, piÞ: ð2Þ

The performance of the Bayes rule depends on
the prior distribution of the pi and the six penalties.
Our approach is to use a simple prior and then
specify a sensible set of penalties for that prior. To
start, we assume an independent uniform prior for
pi. Note that this is a special case of the proposed
beta priors in [9], which contains a detailed
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discussion of the priors for phase I designs. Under
the uniform prior, we set the six penalties at

KD ¼ KE ¼
1

�2 þ �1
, MS ¼ ME ¼

1

1� pT � �2
,

ND ¼ NS ¼
1

pT � �1
,

ð3Þ

which possess the following property.

Proposition 1.
Under the uniform prior for pi and the penalties in
(3), the prior expected penalties for D, E, and S are
the same.

The proof is straightforward and omitted.
Proposition 1 implies that the uniform prior and
the set of penalties in (3) are ‘unbiased’ a priori in
that one does not prefer any of the three actions
over the others before the trial starts. We note that
similar results can be obtained with an arbitrary
beta prior although the performance of such a setup
is part of our ongoing research [12].

Linking to the UPM: It is immediate that given
the penalties in (3), the three posterior expected
penalties R(D, pi), R(S, pi), and R(E, pi) equal (1� the
UPMs) for the intervals (0, pT� e1), [pT� e1, pTþ e2],
and (pTþ e2, 1). Therefore, the Bayes rule Bi chooses
E, S, or D if the interval (0, pT� e1), [pT� e1, pTþ e2],
or (pTþ e2, 1) has the largest UPM. In words, the
mTPI design proposed in Section 2 is equivalent to the
Bayes rule Bi under the decision-theoretic framework
above with the penalties given in (3).

Large-sample properties

We briefly report some large-sample properties of
the mTPI design. Although they do not imply that
the design would perform well in the case of small
sample sizes (such as in dose-finding trials), they
ensure that the mTPI design is theoretically sound.
In the next section, we will evaluate small-sample
properties of the mTPI method based on computer
simulations. For ease of exposition, we place the
theoretical derivations in the Appendix and only
discuss their practical implication below.

The first large-sample property is that the mTPI
method will choose the correct dose-finding action
from among D, S, and E in large samples. That is, if
a dose is too toxic, the mTPI method will always
de-escalate from this dose given enough informa-
tion. Similarly, if a dose is below the MTD, then the
mTPI method will always escalate. These results are

summarized as Proposition 2 in the Appendix.
Building upon these results, our second large-
sample property states that when enough patients
are treated in a practical trial, the mTPI design will
always choose a dose in the equivalence interval to
treat all future patients, given that such a dose is
one of the target candidates in the trial. The
property is summarized as Theorem 1 in the
Appendix.

Simulation study

We conducted extensive simulation studies and
sensitivity analyses with comparisons to estab-
lished methods. We present the simulation results
in subsections, with each focusing on one aspect of
the mTPI design. In addition, we performed
simulation studies for a second trial with different
setups. The results are summarized in the
Supplementary Material.

Overall performance

Based on a clinical trial design described in
Goodman [13], we examined the overall perfor-
mance of the mTPI design. The trial had eight doses
with a maximum sample size of 30 patients.
The target toxicity pT¼0.25. The starting dose was
the lowest dose and the cohort size was three.
We simulated 1000 trials on computer. For each
trial, unless the safety rule 1 in our proposed
algorithm is invoked, that is, dose level 1 is
deemed too toxic, patients will be enrolled and
assigned to appropriate doses based on each design
until the maximum sample size is reached. We
recorded the patient assignments, toxicity
responses, and final doses selected as the MTD for
all the trials. The results are tabulated in Table 1.
We compared the proposed mTPI to the TPI
method, the CRM [5], and the 3þ3 [7]. We used
the CRM model in [5] that defines the CRM
skeleton /¼ (�1, . . . ,�d). The skeleton is a set of
prespecified and fixed toxicity probabilities with
the constraint �1<�2< . . .<�d. According to [5],
the CRM models the probability of toxicity at the
i-th dose as pi ¼ �

expð��Þ
i ; we assume that � follows a

normal prior distribution with mean 0 and stan-
dard deviation 2. The final MTD is the dose with
minimal jp̂i � pT j where p̂i is the posterior mean of
pi. Note that there are many versions of the
CRM (e.g., proposed in [4,14–16]) and that some
of these models may perform better than the one-
parameter model used here.

We used e1¼ e2¼0.05, which was arbitrary.
A sensitivity analysis in the next section will

Modified toxicity probability interval method 657
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Table 1 Simulation results comparing the proposed mTPI method, the TPI in [9], the CRM in [1], and the 3þ3 design in [7]. The true

probabilities of toxicity are presented as percentages for each scenario (first row of each scenario). The selection percentages for the true

MTDs are in bold face

Recommendation percentage at dose level Toxicity Average

pT¼0.25 percentage* number of

patients

Dose 1 2 3 4 5 6 7 8

Scenario 1 5 25 50 60 70 80 90 95 None

mTPI % MTD 14 78 8 0 0 0 0 0 0 24 30

# Pts 7.1 18.3 4.4 0.2 0 0 0 0

TPI % MTD 13 79 8 0 0 0 0 0 0 25 30

# Pts 7.7 16.1 5.8 0.5 0 0 0 0

CRM % MTD 6 83 11 0 0 0 0 0 0 27 30

# Pts 5.7 18.6 4.9 1.0 0 0 0 0

3þ3 % MTD 24 58 16 2 0 0 0 0 0 25 12

# Pts 4.0 5.0 2.6 0.4 0 0 0 0

Scenario 2 1 2 3 4 5 25 50 60 None

mTPI % MTD 0 0 0 2 16 71 10 1 0 16 30

# Pts 3.2 3.5 3.5 4.0 5.2 8.1 2.3 0.1

TPI % MTD 0 0 0 0 19 70 11 0 0 15 30

# pt 3.2 3.2 3.3 3.6 5.0 8.0 3.3 0.3

CRM % MTD 0 0 1 1 20 61 16 2 0 16 30

# pt 3.1 3.4 3.3 3.7 4.7 7.0 3.8 0.9

3þ3 % MTD 0 0 1 2 25 56 11 0 0 13 24

# pt 3.1 3.2 3.2 3.3 3.9 4.8 2.3 0.3

Scenario 3 1 5 50 60 70 80 90 95 None

mTPI % MTD 0 82 17 0 0 0 0 0 0 21 30

# pt 3.2 15.9 10.3 0.6 0 0 0 0

TPI % MTD 0 79 21 0 0 0 0 0 0 22 30

# pt 5.5 13.2 10.2 1.0 0 0 0 0

CRM % MTD 0 49 51 0 0 0 0 0 0 26 30

# pt 3.1 13.0 12.0 1.8 0 0 0 0

3þ3 % MTD 0 70 28 2 0 0 0 0 0 22 13

# pt 3.1 5.2 4.4 0.7 0.1 0 0 0

Scenario 4 ** 40 50 60 70 80 90 95 99 None

mTPI % MTD 31 2 0 0 0 0 0 0 67 41 19

# pt 16.8 2.0 0.2 0 0 0 0 0

TPI % MTD 31 2 0 0 0 0 0 0 67 41 19

# pt 16.8 1.8 0.2 0 0 0 0 0

CRM % MTD 47 2 0 0 0 0 0 0 51 42 23

# pt 20.2 2.5 0.2 0 0 0 0 0

3þ3 % 38 9 1 0 0 0 0 0 0 52 43 6

# pt 4.7 0.5 0.6 0.7 0 0 0 0

Scenario 5 15 25 35 45 55 65 75 85 None

mTPI % MTD 29 45 20 4 0 0 0 0 0 24 (20, 27) 30

# pt 12.4 10.9 5.0 1.1 0.1 0 0 0

TPI % MTD 31 41 21 7 0 0 0 0 0 24 30

# pt 12.4 9.5 5.5 1.9 0.3 0 0 0

CRM % MTD 36 47 14 2 0 0 0 0 0 24 30

# pt 13.8 11.4 3.6 0.9 0.2 0 0 0

3þ3 % MTD 29 37 20 7 1 0 0 0 0 26 12

# pt 4.4 3.9 2.4 0.9 0.2 0 0 0

Scenario 6 5 15 25 35 45 55 65 75 None

mTPI % MTD 2 28 42 23 4 0 0 0 0 20 30

# pt 4.9 10.2 9.3 4.5 0.9 0.1 0 0

TPI % MTD 2 24 42 24 7 0 0 0 0 22 30

# pt 5.1 8.2 9.2 5.7 1.6 0.3 0 0

CRM % MTD 4 37 45 12 2 0 0 0 0 20 30

# pt 5.5 11.5 8.9 3.4 0.7 0.1 0 0

3þ3 % MTD 9 28 34 22 5 0 0 0 0 21 15

# pt 3.6 4.3 3.8 2.3 0.8 0.2 0 0

*Overall % of patients with DLTs over all the simulated trials. **In all scenarios other than Scenario 4, the mTPI, TPI, and CRM will stop

the trial when the maximum number of patients (30) is reached. For Scenario 4, the trial will stop early since all the doses are too toxic.
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demonstrate the robustness of the method to the
choices of e’s. For the CRM we specified the prior
toxicity probability for dose i to be �i¼0.05 * i. For
the TPI method in [9], we used the recommended
parameter values K1¼1 and K2¼1.5, which were
calibrated by the authors of the article.

Table 1 shows that overall the mTPI method
exhibits comparable operating characteristics to
those of the other methods. We observe that the
3þ3 does not perform as well as other methods in
most scenarios. In particular, it usually yields
smaller percentages of selecting the correct MTD.
It appears that the 3þ3 is too conservative in that it
is unable to escalate quickly even when the doses
are safe. The CRM, while generally performing well
for most scenarios, has worse performance for
Scenario 3, in which there is a large gap between
the true toxicity probabilities of adjacent doses.
This is due to the mismatch between the under-
lying dose–response model for the CRM and the
true toxicity probabilities specified in the scenario.
Third, we summarize the numbers of patients
treated at the MTD and at doses above the MTD
below, for the mTPI, TPI, and CRM methods across
the six scenarios. The ‘na’ in the vectors V’s
corresponds to Scenario 4, in which all the doses
are above the MTD.

# patients at the MTD # patients at doses
above the MTD

ð18:3, 8:1, 15:9,
na, 10:9, 9:3Þ ð4:6, 2:4, 10:9,

19:0, 6:2, 5:5Þ
ð16:1, 8:0, 13:2,

na, 9:5, 9:2Þ ð6:3, 3:6, 11:2,
19:0, 7:7, 7:6Þ

ð18:6, 7:0, 13:0,
na, 11:4, 8:9Þ ð5:9, 4:7, 13:8,

23:0, 4:7, 4:2Þ

For Scenarios 1–4, the mTPI method treats, on
average, fewer patients at doses above the MTD
than the other two methods while maintaining
about the same or higher numbers of patients at the
MTD. For Scenarios 5 and 6, the CRM is better partly
because the set of prior probabilities we used was
close to the true toxicity probabilities. Last, in all but
one scenario, the toxicity percentage of the mTPI is
the lowest among the three model-based methods
(mTPI, TPI, CRM), indicating that it is the safest
model-based design. The 3þ3 design almost always
yields the lowest overall toxicity percentage due to
its conservative nature. Considering that the mTPI
method is the simplest model-based method oper-
ationally, these results are particularly encouraging.

Sensitivity analyses

We conducted additional sensitivity analyses for the
mTPI method. First, we varied the values of the e’s and
reran the computer simulations for all five scenarios.
For simplicity, we arbitrarily choose Scenario 1 and
present the simulation results in Table 2. The results
demonstrate the robustness of the method to different
values of e’s at two extremes, one with large e’s and the
other with small values. This is not surprising because,
by definition, the method compares per-unit prob-
ability mass for an interval and is therefore robust to
how wide the interval is.

Second, after fixing e1¼ e2¼0.05, we tried
different beta prior distributions for the mTPI
method (Table 3). Since the penalties of the mTPI
method are calibrated for the uniform prior (or
beta(1,1)), we obtained the best performance under
this prior. The performance of the mTPI method
under other priors is comparable, although worse
than the uniform prior. We note that when
strong prior information is available, one can
use a more informative prior distribution for the

Table 2 Simulation results of the mTPI using different e1 and e2 values that define the equivalent interval [pT� e1, pTþ e2] (Section

‘Overall performance’). The selection percentages for the true MTDs are in bold face

Recommendation percentage at dose level Toxicity Average
pT¼0.25 percentage* number of

patients

Dose 1 2 3 4 5 6 7 8

Scenario 1 5 25 50 60 70 80 90 95 none

e1¼ e2¼0.05 % MTD 14 78 8 0 0 0 0 0 0 24 30
# Pts 7.1 18.3 4.4 0.2 0 0 0 0

e1¼ e2¼0.2 % MTD 15 76 9 0 0 0 0 0 0 24 30

# Pts 7.7 18.4 3.7 0.2 0 0 0 0

e1¼ e2¼0.001 % MTD 14 78 8 0 0 0 0 0 0 24 30
# Pts 7.1 18.3 4.3 0.2 0 0 0 0

*Overall % of patients with DLTs over all the simulated trials.
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mTPI method. However, usually little prior infor-
mation is known about the toxicity of the treat-
ments in phase I trials, as they typically involve
novel therapies.

Lastly, in [12] we investigated an alternative
scheme of specifying and calibrating different beta
priors by the same approach as stated in Proposition
1. That is, we proposed alternative beta priors and
modified our penalty functions so that the prior
expected penalties for D, E, and S are the same. We
examined the performance of these priors under a
variety of simulated scenarios as part of ongoing
research. Initial results (not shown) suggest that the
performance of the beta(1,1) prior in this article are
comparable to that of the other beta priors.

Software

The mTPI method is available in both Excel and R
programs. In the Excel program, the method is
presented in a macro with an add-in file. The Excel
program contains a dose-finding table that consists
of all the possible dose-finding actions for a given
trial. Figure 2 presents a screenshot of the table. To
use the macro, one needs to provide the sample
size, the EI, and the toxicity probability pT of the
MTD. Then by clicking a button we embedded in
Excel, a table in the form shown in Figure 2 will be
generated. Using this table, one can carry out all
the dose assignments for a trial without needing to
conduct additional computations. For example,
suppose patients are being treated at dose i with xi

dose-limiting toxicities observed out of ni patients.
In the Excel table, locate the row and column that
correspond to xi and ni, respectively. The appro-
priate decision is given by the letter in the
corresponding cell of the Excel table. Thus, if
xi¼1 out of ni¼3 patients has experienced DLT,

then the decision is ‘S’ to stay at the current dose.
Note that these decisions do not depend on dose
level i. That is why we only need to provide one
table to carry out dose-finding decisions at various
doses. In the second page of the Excel macro (not
shown), we embedded other buttons to conduct
computer simulations similar to those shown in
Table 1. Results for, say, 5000 simulations are
usually obtained in a few seconds.

We also provide R functions with the same
capabilities. In particular, the R functions allow
users to fully specify the trial parameters, including
the sample size, the EI, the cohort size, the starting
dose, the true toxicity probabilities for different
scenarios, and the prior distributions. Both Excel
and R programs are available to download at http://
odin.mdacc.tmc.edu/�ylji/.

Discussion

The mTPI method is an improved version of the
TPI. While taking advantage of some desirable
features of the TPI (such as simplicity and user-
friendly software), the mTPI method extends the
TPI in two aspects.

� First, the TPI method requires users to calibrate
two parameters K1 and K2 (see ‘Introduction’
section for their definitions) that affect the
performance of the method. In contrast, based
on our experience the mTPI method does not
need to be calibrated for different trials. Of course,
one may change the settings of the mTPI method
if it is necessary to do so. For example, it is
certainly feasible to modify the prior distributions
if historical data are available on the toxicity of
the treatment, although this is not particularly
common when designing a phase I trial.

Table 3 Simulation results comparing the results of the mTPI method with e1¼ e2¼0.05 using different beta prior distributions

Beta(a, b) (Section ‘Overall performance’). The selection percentages for the true MTDs are in bold face

Recommendation percentage at dose level Toxicity Average

pT¼0.25 percentage* number of

patients
Dose 1 2 3 4 5 6 7 8

Scenario 1 5 25 50 60 70 80 90 95 none

a¼ b¼1 (default) % MTD 15 76 9 0 0 0 0 0 0 24 30

# Pts 7.7 18.4 3.7 0.2 0 0 0 0

a¼ b¼ .05 % MTD 15 76 8 1 0 0 0 0 0 27 30
# Pts 6.3 17.1 6.0 0.5 0 0 0 0

a¼1, b¼3 % MTD 9 77 12 1 0 0 0 0 0 29 30

# Pts 4.9 16.9 7.5 0.6 0 0 0 0

a¼ .1, b¼ .3 % MTD 16 73 10 0 0 0 0 0 0 31 30
# Pts 5.1 14.2 7.4 2.4 0.7 0 0 0

*Overall % of patients with DLTs over all the simulated trials.
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� Second and more importantly, the key statistics
used for posterior inference are different
between the two methods. For the TPI
method, the decisions are based on the poster-
ior probabilities of the three intervals defined
by K1, K2, and the posterior standard deviations
of the toxicity probabilities. For the mTPI
method, the equivalence intervals are prespeci-
fied before the trial and do not depend on any
parameters of the probability model. In addi-
tion, the decisions of the mTPI method are
based on the evaluation of the unit probability
masses. We show that they correspond to the
Bayes rule under a decision-theoretic type of
framework.

We believe that the CRM is an excellent method
with many advantages over 3þ3 like designs.

Furthermore, our simulations show that, in certain
situations, the CRM can outperform our method.
However, we want to re-emphasize the importance
of simplicity for a model-based dose-finding design.
We believe that the simplicity of the method for
early phase trials is the dominating factor that
decides whether the method will be embraced by
physicians in practice. This not only involves the
availability of software, but also the amount of
effort required to monitor a trial. For example, the
CRM has been implemented by many researchers
with available software for conducting simulations.
However, physicians still need to work closely with
statisticians and computer scientists in order to
make dose assignment decisions whenever a
patient needs to be treated. Perhaps the most
attractive feature of the TPI and the mTPI methods
is the availability of the Excel spreadsheet that frees

Figure 2 A screenshot of the Excel macro for the mTPI method. The table is uniquely determined upon specification of the sample
size, the EI, and pT (see ‘Introduction’ section). The letters in different colors are computed based on the decision rules under the

mTPI method and represent different dose-finding actions. In addition to actions D, S, and E, the table includes action U, which is

defined as the execution of the dose exclusion rule in the proposed dose-finding algorithm (Section ‘Dose-finding algorithm’)
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physicians from additional burdens on making
dose assignment decisions.

An arguable point is our choice of the indepen-
dent prior models for the pi’s. From a statistical
inference point of view, the assumption of inde-
pendence is clearly not optimal as the toxicity
probabilities of the doses are assumed to be ordered
and hence dependent. So theoretically it is desir-
able to introduce dependent models for pi’s.
However, we believe that for phase I trials with
small sample sizes, especially when only a few (up
to 6, for example) patients are treated at a given
dose, the dependence introduced by prior models
will have a strong influence on the operating
characteristics of the dose-finding design.
Therefore, when the dependence introduced in
the prior models does not agree with the true
toxicity probabilities, bias may be introduced in a
small-sample situation, which subsequently may
lead to poor performance under the design. More
seriously, there is no way of knowing the level of
agreement in practice since for practical trials one
does not know the true toxicity probabilities.
Therefore, we believe that introducing dependent
models for a phase I trial could be tricky and we
resorted to a simple approach as in [9]. The
independent prior models performs quite well
compared to existing approaches. This point has
been carefully debated in [9].

A special case in practice involves trials with a
cohort size of one. We generally do not recommend
making a dose-finding decision on any dose when
fewer than two patients are treated. However, our
software did not build this rule into the computer
code. We do not expect many practical trials with a
cohort size of one because it takes a long time to
complete such trials and they do not have much of
an advantage over using cohort sizes larger than
one. If needed, one can simply modify our code and
add a rule to only invoke dose finding after at least
two patients have been treated at a given dose.

A closely related but separate problem is the
selection of the MTD at the end of the trial. In this
article, we adopted the same approach as in [9],
where the MTD is selected based on the distance
jp̂i � pT j between the isotonic-transformed posterior
mean p̂i and the target pT (see the proposed dose-
finding algorithm in the section ‘Dose-finding
method’). In addition, one can easily obtain interval
estimates for p̂i by sampling independently from the
posterior beta distribution for each pi and perform-
ing isotonic transformation on the posterior sam-
ples. Using the transformed samples, one can easily
obtain posterior intervals for p̂i numerically. Note
that the selection of the MTD is statistically different
from the design of dose-finding trials in that the
former is related to statistical inference based on
observed data and the latter is related to design of

experiments before data are collected. Even though
in practice these are two essential components of a
dose-finding trial, they require different statistical
thinking and remedies. This has also been noted by
other authors (e.g., Stylianou and Flournoy [16]).
Further discussion related to the selection of the
MTD goes beyond the scope of this article and will
be considered in our future work.

Another task for future work is to impose early
stopping in a trial when sufficient evidence indi-
cates that one dose corresponds to the MTD and
that all future patients will be assigned to that dose.
This can be realized based on, for example, poster-
ior predictive inference. However, early stopping is
not always required as some institutional review
boards and protocol review committees may expect
to see the trial all the way to the end, given that no
safety or ethical concerns are raised.
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Appendix

Proposition 2. For any e1>0 and e2>0,

� if pi02 [pT� e1, pTþ e2], then there exists N>0,
when ni>N, Bi¼ S a.s;
� if pi0< pT� e1, then there exists N>0, when

ni>N, Bi¼E a.s;
� if pi0> pTþ e2, then there exists N>0, when

ni>N, Bi¼D a.s;

Proof of Proposition 2:
Given the prior density �(p) and the binomial
likelihood, the posterior density of p is given by

f ðpjdataÞ /
Yd

i¼1

pxi

i ð1� piÞ
ni�xi�ðpÞ: ð4Þ

Define the ‘‘generalized’’ observed Fisher infor-
mation matrix, denoted by I �, as follows:

I�ij ¼ �
@2

@pi@pj
log f ðpjdataÞjp¼ ~p, i, j ¼ 1, . . . , d,

where ~p is the posterior mode of p. By the Bayesian
central limit theorem (Carlin and Louis [17],
p. 122), when ni is large for i¼1, . . . , d,

pjdata �
�

MVNd ð ~p, fI�g�1Þ,

where MV Nd denotes a d-dimensional multivariate
normal distribution. By the Cramér-Wold Device

(Sen and Singer, [18], P. 106),

pijdata �
�

Nð ~pi, �
2
i Þ, ð5Þ

where ~pi is the i-th component of ~p and �2
i is the

(i, i)th element of {I �}�1. Under suitable regularity
conditions, the posterior mode ~p is consistent
(Gelman et al. [19] p. 106). Because the first and
second partial derivatives of �(p) are bounded in
the neighborhood of p0, when ~p is close to p0, it
follows that for i 6¼ j

I�ij ¼ �
@2

@pi@pj
log�ðpÞjp¼ ~p

are bounded, and

I�ii ¼
ðni � xiÞ ~p

2
i þ ð

~pi � 1Þ2x2
i

~p2
i ð1� ~piÞ

2
�
@2

@p2
i

log�ðpÞjp¼ ~p

goes to 1 as ni goes to 1. Let �j be the j-th
eigenvalue of I � with associated eigenvector xj, the
fact that �j ¼ x0jI

�xj=x
0
jxj implies that �j!1, for

j¼1, . . . , d. Hence �2
j ! 0, j¼1, . . . , d. Combined

with the consistency of ~p, the result in (5), and that
pi0¼ pT, as ni!1,

Pð pT � �1 � pi � pT þ �2jdataÞ ! 1, a:s:,

for any e1>0 and e2>0.

Theorem 1.
Let pi0 represent the true toxicity probability for
dose i. Among all the doses specified in the trial, if
there exists a unique dose i such that pi02 [pT� e1,
pTþ e2], then there exists N>0 when the number
of patients treated in the trial is larger than N and
all the future patients will be treated at dose i.

Proof of Theorem 1 is immediate based on
Proposition 2. Theorem 1 ensures the consistency
of the mTPI design in that when a dose is in the
equivalence interval, at some point of the trial, all
future patients will be assigned to that dose.
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